
MicroscopeSketch:
Accurate Sliding Estimation Using Adaptive Zooming

Yuhan Wu
∗†

Peking University

yuhan.wu@pku.edu.cn

Shiqi Jiang
‡

Peking University

shiqijiang@pku.edu.cn

Siyuan Dong
§

Peking University

dongsiyuan@pku.edu.cn

Zheng Zhong
§

Peking University

zheng.zhong@pku.edu.cn

Jiale Chen
§

Peking University

jiale_chen@pku.edu.cn

Yutong Hu
¶

Peking University

huyutong@pku.edu.cn

Tong Yang
∗†

Peking University

yangtongemail@gmail.com

Steve Uhlig
∥

Queen Mary University of London

steve.uhlig@quml.ac.uk

Bin Cui
∗

Peking University

bin.cui@pku.edu.cn

ABSTRACT
1
High-accuracy real-time data stream estimations are critical for

various applications, and sliding-window-based techniques have

attracted wide attention. However, existing solutions struggle to

achieve high accuracy, generality, and low memory usage simul-

taneously. To overcome these limitations, we present MicroscopeS-

ketch, a high-accuracy sketch framework. Our key technique, called

adaptive zooming, dynamically adjusts the granularity of coun-

ters to maximize accuracy while minimizing memory usage. By

applying MicroscopeSketch to three specific tasks—frequency es-

timation, top-𝑘 frequent items discovery, and top-𝑘 heavy changes

identification—we demonstrate substantial improvements over ex-

isting methods, reducing errors by roughly 4 times for frequency

estimation and 3 times for identifying top-𝑘 items. The relevant

source code is available in a GitHub repository.

CCS CONCEPTS
• Theory of computation→ Sketching and sampling; • Net-
works→ Network measurement.

∗
National Key Laboratory for Multimedia Information Processing, School of Computer

Science, Peking University, Beijing, China

†
Peng Cheng Laboratory, Shenzhen, China

‡
School of Mathematical Sciences, Peking University, Beijing, China

§
School of Electronic Engineering and Computer Science, Peking University, Beijing,

China

¶
School of Intelligence Science and Technology, Peking University, Beijing, China

∥
School of Electronic Engineering and Computer Science, London, U.K.

1
Yuhan Wu, Shiqi Jiang, and Siyuan Dong contribute equally to this paper.

Corresponding author: Tong Yang (yangtongemail@gmail.com).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599432

KEYWORDS
Data stream mining, Sketch, Data structure, Sliding window, Ap-

proximate query

ACM Reference Format:
Yuhan Wu, Shiqi Jiang, Siyuan Dong, Zheng Zhong, Jiale Chen, Yutong Hu,

Tong Yang, Steve Uhlig, and Bin Cui. 2023. MicroscopeSketch: Accurate

Sliding Estimation Using Adaptive Zooming. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23),
August 6–10, 2023, Long Beach, CA, USA.ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3580305.3599432

1 INTRODUCTION
Approximate estimation of data streams provides real-time infor-

mation for various applications, such as anomaly detection [1–3],

network measurement [4, 5], network accounting [6], joining ta-

bles [7, 8], and more [9–22]. Such estimation typically involves

tasks such as frequency estimation [23–27], finding the top-𝑘 fre-

quent items [28–31], and finding the top-𝑘 heavy changes [32–34].

Specifically, in a data stream, each item carries a key/identifier,

e.g., the source IP address of a data packet in the network stream.

Frequency estimation refers to approximating the number of items

with the same key/identifier. Finding the top-𝑘 frequent items aims

to identify the 𝑘-most frequent items. Similarly, finding top-𝑘 heavy

changes aims to identify the 𝑘 items whose frequency underwent

the most significant change between two adjacent time windows.

For these tasks, the sketch [35–40], a probabilistic data structure,

has been widely considered thanks to its small and controllable

error as well as its memory efficiency.

For data streams, there are two primary time window models—

fixed window and sliding window, which have been extensively

studied in literature [41–46]. The sliding window model focuses on

recent data items, such as those in the last three minutes. As it better

captures the real-time changes in data stream characteristics, we

focus on the sliding window model over the fixed window model.

The state-of-the-art solution for approximate estimation in slid-

ing windows is sliding sketches [45, 47]. Sliding Sketches divide

the sliding window into smaller sub-windows, utilizing the consol-

idation of the most recent ones in order to approximate the overall

https://doi.org/10.1145/3580305.3599432
https://doi.org/10.1145/3580305.3599432

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhan Wu et al.

window. Specifically, sliding sketches partition time into several sta-

tionary sub-windows of identical size, and ensure that by combining

the most recent𝑇 +1 sub-windows, the entire target sliding window
is completely covered. Subsequently, Sliding sketches employ 𝑇 +1
sketches to individually record the frequency of items in themost re-

cent𝑇 +1 sub-windows. As time passes, the oldest sub-window exits

the sliding window, prompting the corresponding outdated sketch

structure to clear itself and begin tracking a new incoming sub-

window. Although Sliding sketches achieve good accuracy, their

design concentrates solely on the time dimension (e.g., dividing the
slidingwindow and discarding old data) without taking into account

the frequency similarities across the𝑇 +1 sub-windows. As a result,
their accuracy is hindered from achieving further improvement.

Our goal is to design a sketch for sliding window estimation with

following four requirements: 1) High accuracy; 2) Small memory

usage; 3) Versatility in terms of application to a variety of estima-

tion tasks and algorithms; 4) Generalizable for both time-based and

count-based sliding window models. To the best of our knowledge,

no existing work is able to meet all the above requirements.

In this paper, we propose MicroscopeSketch (MicroSketch for

short) for three typical estimation tasks in the slidingwindowmodel.

MicroSketch offers the following three properties: 1) Accuracy: its

error is significantly smaller than the state-of-the-art. 2) Compact-

ness: its memory usage is small enough to be held in CPU caches or

network devices. 3) Generality: it can be applied to all sketches that

use counters for estimation in time-based or count-based sliding

window.

Our key technique is named adaptive zooming, which dynami-

cally alters the granularity of count tracking to obtain the highest

possible accuracy in frequencies while minimizing storage space

usage. We approximate the time window in the same way as the

sliding sketch, using 𝑇 +1 independent counters for tracking the

frequencies of a single key’s presence in each of the correspond-

ing sub-windows. We discovered that, for each of most item keys

(whether frequent or not), their count in the𝑇 +1 sub-windows is of-
ten quite similar in most cases, i.e., the size is within the same order

of magnitude. This property enables a more compact representation

of the𝑇 +1 numbers. In this regard, we introduce adaptive zooming

that emulates the floating-point number representation (i.e., par-
titioning each number into a fixed-precision integer referred to as

the significand and an integer exponent). We then consolidate the

𝑇 +1 integer exponents into a single exponent, thereby requiring

only a small additional significand to be stored for each number.

In summary, We propose MicroSketch, a precise and versatile

approach for three estimation tasks in the sliding window model,

including frequency estimation, finding top-𝑘 item, and top-𝑘 heavy

change detection. Through theoretical analysis, we demonstrate

that different querying approaches can allowMicroSketch to achieve

overestimation, underestimation, or unbiased rounding. Our evalu-

ation shows that MicroSketch has considerably smaller error rates

than prior works, with frequency estimation errors reduced by

around 4 times and top-𝑘 item searches by around 3 times smaller

than existing approaches. Our source code is available on Github

[48].

2 BACKGROUND AND RELATEDWORK
This paper focuses on three kinds of measurement tasks: fre-

quency estimation, finding top-𝑘 frequent items, and finding top-𝑘

heavy changes. Below, we describe the sliding window models, the

measurement tasks, and existing works. Regarding existing works,

we focus on sketches applied to the sliding window model, which

we will elaborate on in Section 2.2, 2.3 and 2.4. For algorithms in

fixed windows, we refer the reader to [49, 50].

2.1 Preliminaries
The data stream [45]: A data stream is a sequence of items that

arrive in real time, where each item has its own identifier/key (e.g.,
each network packet item has a source IP address as the key). When-

ever an item arrives, the processing algorithm (i.e., the sketch we are
targeting) will insert it into the data structure. When a user submits

a query, we will query the data structure and return the results.

The sliding window model [51]: In the data stream, users often

query the items arrived in the latest period of time, where the period

is called sliding window. Depending on how the sliding window is

defined, there are two kinds of sliding window models: count-based
window is the most recent𝑊 items, and time-based window is the

period from time 𝑡−𝑊 to 𝑡 , where 𝑡 is the current time and𝑊 is

the window size. For example, in the sliding window, users can

perform frequency estimation, that is, count how many items have

the same key:

PROBLEM 1. (Count-based Frequency Estimation). Given an
item 𝑒 in a data stream, count the number of appearances of 𝑒 in the
recent𝑊 items.

PROBLEM 2. (Time-based Frequency Estimation). Given an
item 𝑒 in a data stream, at any time 𝑡 , count the number of appear-
ances of 𝑒 from time 𝑡−𝑊 to 𝑡 .

The definition of finding top-𝑘 frequent items and finding top-𝑘

heavy changes in the count-based and time-based sliding window

are similar (Section 2.3 and 2.4).

Sketch: Sketch is a probabilistic data structure employing hash-

ing that can quickly process items in a data stream, using a small

amount of memory [23, 52, 53].

2.2 Frequency Estimation
Frequency estimation refers to estimating the frequency of ar-

bitrary items. Prior works are Sliding sketches [45] and ECM [54].

Sliding sketches is a framework, which can apply to many algo-

rithms. To estimating frequency for arbitrary item, Sliding sketches

apply CM sketch [23] and CU [6] sketch. Similar to our time quan-

tization, the Sliding sketches divide the sliding window into some

sub-windows, and use the method of hopping window to approx-

imate the sliding window. The error caused by the approximation

is call window error. The more portion of the latest sub-window

the sliding window cover, the smaller window error the sliding

sketches have. In contrast, the error caused by hash collisions in

the sketch is call sketch error. And a sketch’s total error is the sum

of its window error and sketch error. Normally, to minimize the

error, sketch algorithms will build 𝑑 sketches, and reported the

estimation of the sketches with minimal error. However, if the 𝑑

MicroscopeSketch: Accurate Sliding Estimation Using Adaptive Zooming KDD ’23, August 6–10, 2023, Long Beach, CA, USA

sketches work synchronously, their window error will be similar,

so the "report the estimation with minimal error" method can only

minimize sketch error. To minimize the window error, the Sliding

sketches make 𝑑 sketches work asynchronously, so there is always

one sketch’s sliding window cover a large portion of the latest

sub-window, which has a small window error. The Sliding sketches

design a scanning operation to achieve it. However, it just focuses

on the design of the time dimension, while the MicroscopeSketch

considers two dimensions: time and frequency.

ECM sketch [54] is based on the CM sketch [23], and it uses Expo-

nential Histograms (EH) to replace each counter in the CM sketch.

Exponential Histograms (EH) [41] is a classic algorithm for count-

ing in sliding windows, which can be used to count the frequency of

a specified item in this task. EH divides a sliding window into many

smaller sub-windows, and uses buckets to record the frequencies in

these sub-windows. Specifically, the bucket of EH records two in-

formation, ⟨𝑐𝑛𝑡,𝑡𝑠⟩, where 𝑐𝑛𝑡 means frequency count and 𝑡𝑠 is the

timestamp of the last arrived item in this bucket. EH is initialized

with no buckets. After recording for a while, it will accumulate sev-

eral buckets. When a target item arrives, it appends a new bucket

⟨1,𝑡𝑛𝑜𝑤⟩. Then, it may merge some buckets by some rules. To merge

⟨𝑐𝑛𝑡1,𝑡𝑠1⟩ and ⟨𝑐𝑛𝑡2,𝑡𝑠2⟩, the new bucket is ⟨𝑐𝑛𝑡1+𝑐𝑛𝑡2,min𝑡𝑠1,𝑡𝑠2⟩.
When a bucket’s 𝑡𝑠 is out of the current sliding window, the bucket

is dropped. However, because EH records too many timestamps,

when the memory is limited, ECM’s accuracy is poor.

2.3 Finding Top-k Frequent Items
Finding top-𝑘 frequent items refers to finding 𝑘 items with the

highest frequency. Prior works are sliding sketches [45] and WCSS

[55]. Sliding sketches apply HeavyKeeper [56] and use the asyn-

chronous method mentioned above to achieve great accuracy in

the task of finding top-𝐾 in the sliding window. WCSS, which is

based on Compact Space-Saving (CSS) structure, records each item

and its frequency during the recent window. Supposing the sliding

window size is𝑊 , WCSS divides the window into 𝑘 sub-windows,

each of which is of size (𝑊
𝑘
). When an item is updated in CSS, and

its frequency count reaches a multiple of the sub-window size, it

is said that the item overflows. WCSS employs a queue to record

the overflows in each block, and maintain (𝑘 +1) queues for the
recent (𝑘+1) blocks. To estimate the frequency of an item, WCSS

count the number of overflows of that item in the recent window,

denote it as 𝑑 , and query the frequency count, 𝑦, in CSS. Then,

WCSS multiply 𝑑 by the block size (𝑊
𝑘
), and add the remainder in

CSS, i.e., (𝑑×𝑊
𝑘
+𝑦%𝑊

𝑘
). To guarantee no under-estimation occurs

in WCSS, two more block size is increased. Therefore, the estimated

frequency is ((𝑑+2)×𝑊
𝑘
+𝑦%𝑊

𝑘
). However, when the memory is

insufficient, the accuracy of WCSS is poor.

2.4 Finding Top-k Heavy Changes
Finding heavy changes is to detect traffic anomalies by looking

for significant changes in a short time that are inconsistent with

its normal behavior. This is a crucial task in a lot of big data scenar-

ios, such as anomalies detection [57, 58], web search engines [59],

time series forecasting and outlier analysis [60], etc. Nevertheless,

normal heavy changes needs users to predefine the threshold of

frequency difference. To skip the trouble, We devise MicroSketch

to find the top-𝑘 heavy changes.

Finding top-𝑘 heavy changes refers to finding 𝑘 items whose

frequency changes most across successive windows. Suppose there

is an item 𝑒 and two adjacent sliding windows𝑤1 and𝑤2. The fre-

quency of 𝑒 in𝑤1 and𝑤2 are 𝑓1, 𝑓2, respectively. The top-𝑘 heavy

changes refer to the 𝑘 items such that |𝑓1− 𝑓2 | is the highest. To
the best of our knowledge, no existing work can be directly used

to find the top-𝑘 heavy changes (or finding heavy changes) in the

sliding window model.

3 THE MICROSCOPESKETCH
In this section, we first present the data structure of our solution

in Section 3.1. Then we introduce the operations of MicroSketch

in Section 3.2. Finally, we showcase the optimization method of

unbiased rounding in Section 3.3. The symbols frequently used in

this paper are shown in Table 1.

Table 1: Symbols used in this paper.

Notation Meaning
𝑃 Array of pixel counter, recording 𝑎 of 𝑎×𝑐𝑏
𝑍 Zooming counter, recording 𝑏 of 𝑎×𝑐𝑏
𝑆 Shutter counter

𝑐 A parameter of 𝑎×𝑐𝑏
𝑙 Number of bits used for each pixel counter

𝑇 Number of sub-windows per sliding window

𝑛 Current sub-window

𝑓 True frequency in the recent sliding window

ˆ𝑓 Estimated frequency given by MicroscopeSketch

3.1 Data Structure
We divide a sliding window into 𝑇 sub-windows, and propose

MicroscopeSketch (MicroSketch for short) to record the frequency

in the recent𝑇 +1 sub-windows. MicroSketch consists of three parts:

𝑇 +2 pixel counters 𝑃 [0],𝑃 [1],···,𝑃 [𝑇 +1], a zooming counter 𝑍 , and

a shutter counter 𝑆 . We approximate the exact frequency by 𝑎×𝑐𝑏
(e.g., 𝑐 =2). For each sub-window, we use a pixel counter to record

the value of 𝑎, and all recent 𝑇 + 1 sub-windows share the same

value of𝑏, recorded by the zooming counter𝑍 . 𝑐 is a predefined base

number. We will elaborate on the usage of 𝑎, 𝑏 and 𝑐 in Section 3.2.

To minimize the error caused by quantization, we use the shutter

counter to record the sum of 1) the frequency of the current sub-

window and 2) the remaining frequency of the previous sub-window

(We will elaborate in Section 3.2). Each pixel counter has 𝑙 bits

(𝑙 < 32), ranging from 0 to 2
𝑙 −1. The zooming counter has 5 bits,

and the shutter counter has 32 bits. All counters are initialized to 0.

Here we explain two design choices briefly: (1) Why we need

𝑇 +2 pixel counters instead of 𝑇 pixel counters? (2) Why we use

𝑎×𝑐𝑏 to approximate the frequency?

For the first question, as shown in Figure 1, the sliding win-

dow may span 𝑇 +1 sub-windows. Therefore, 𝑇 +1 sub-windows’
pixel counters might be used simultaneously. We also need one

more pixel counter, the zero counter (always 0), to safely clean the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhan Wu et al.

outdated information from the sliding window. For the second ques-

tion, using 𝑎×𝑐𝑏 to approximate the frequency is easy and efficient.

Thanks to its neat structure, we can share 𝑏 for many 𝑎 to save

memory, and implement our zoom-in and zoom-out operation to

raise accuracy in this approximation method.

3.2 Operations
Insertion: Let 𝑒 be the incoming item, and 𝑛 be the current sub-

window. First, we locate the𝑛 mod (𝑇 +2)𝑡ℎ pixel counter 𝑃 [𝑛 mod

(𝑇 +2)]. We call it 𝑃𝑐𝑢𝑟 for convenience. We locate the zero counter
𝑃 [(𝑛+1) mod (𝑇 +2)]. Second, we check whether the zero counter is
0 and clear it otherwise. Third, we increment the shutter counter by

1, then do the carry-in operation: if the shutter counter reaches the

threshold 𝑐𝑍 , we increment 𝑃𝑐𝑢𝑟 by 1 and clear the shutter counter

to 0. After incrementing, if 𝑃𝑐𝑢𝑟 reaches its maximum value, i.e., 2𝑙 ,
we do the zoom-out operation: increasing the zooming counter

𝑍 by 1 and dividing all pixel counters 𝑃 [0],𝑃 [1],···,𝑃 [𝑇 +1] by 𝑐 , to
adapt to the increasing frequency. When we divide a number that is

not the multiples of 𝑐 in a pixel counter, a rounding error will occur.

We discuss this in Section 3.3. The pseudo-code is shown in Alg. 10.

Note that we normally do not clean the shutter counter at the

end of each sub-window (expect the applications of the CU sketch

[6], we will elaborate it in Section 4.1). Instead, we let the next sub-

window inherit the remaining frequency. In this way, the remaining

frequency will incur an underestimation error for this sub-window

and an overestimation error for the next sub-window. Therefore,

when we sum up the recent 𝑇 + 1 sub-windows to calculate the

estimated frequency in the sliding window, these errors will almost

be canceled out.

Algorithm 1: Insertion-MicroscopeSketch

Input: an item 𝑒; 𝑛, the current sub-window;

1 Locate 𝑃𝑐𝑢𝑟 for the current sub-window;

2 Clear expired statistics: 𝑃 [(𝑛+1) mod (𝑇 +2)]←0;

3 Increase the shutter counter: 𝑆←𝑆+1;
4 if 𝑆 =𝑐𝑍 then
5 𝑆←0;

6 𝑃𝑐𝑢𝑟←𝑃𝑐𝑢𝑟 +1;
7 if 𝑃𝑐𝑢𝑟 =2𝑙 then
8 𝑍←𝑍 +1;
9 for 𝑖 from 0 to (𝑇 +1) do
10 𝑃 [𝑖]←𝑃 [𝑖]/𝑐;

Zoom-in operation: In Insertion, we described how to sponta-

neously do the zoom-out operation when the frequency reaches

the maximum value. Now we describe how to do the zoom-in
operation when the frequency becomes small to achieve a more

accurate estimation. At the end of every sub-window, we check

whether all pixel counters 𝑃 [0],𝑃 [1],···,𝑃 [𝑇 +1] are smaller than

2
𝑙

𝑐 . If so, we multiple all the pixel counters by 𝑐 and decrement the

zooming counter by 1.

Query:We first compute the frequency of each sub-window. We

use
ˆ𝑓𝑖 to denote the frequency of the 𝑖𝑡ℎ sub-window. The detailed

formula to compute
ˆ𝑓𝑖 is shown below.

ˆ𝑓𝑖 =𝑃 [𝑖 mod (𝑇 +2)]×𝑐𝑍 (1)

The estimated frequency for a sliding window using MicroSketch is

the sum of three parts: the value of the shutter counter 𝑆 , the sum
of the frequency of the recent 𝑇 sub-windows, and an estimated

frequency of the oldest sub-window in the sliding window (i.e., the
recent (𝑇 +1)𝑡ℎ sub-window), which is denoted by Δ𝑓 . The formula

is shown in Eq. 2.

ˆ𝑓 =𝑆+
𝑛∑

𝑖=𝑛−𝑇+1

ˆ𝑓𝑖+Δ𝑓 (2)

There are three methods to compute Δ𝑓 : linear approximation,

overestimation, and underestimation.
2
1) The linear approximation

is the most accurate one according to our experimental results. Let 𝑡

be the current time and𝑤 be the size of a sub-window. We compute

the proportion 𝑝 = 1− 𝑡 mod 𝑤
𝑤 ∈ [0,1]. 𝑝 is the proportion of the

oldest sub-window included in the sliding window. Then, we set

Δ𝑓 = ˆ𝑓𝑛−𝑇 ×𝑝 to estimate the frequency of that part. 2) The over-

estimation method sets Δ𝑓 = ˆ𝑓𝑛−𝑇 . 3) The underestimation method

sets Δ𝑓 =− ˆ𝑓𝑖0 , where 𝑖0 be the minimum 𝑖⩾1 such that
ˆ𝑓𝑛−𝑇+𝑖 ≠0.

Deletion: Similarly to Insertion, we first locate 𝑃𝑐𝑢𝑟 . Then, there

are three cases: 1) If the shutter counter is not 0, we decrement the

shutter counter by 1. 2) If the shutter counter is 0, but 𝑃𝑐𝑢𝑟 is not 0,

we decrement 𝑃𝑐𝑢𝑟 by 1 and set shutter counter to 𝑐𝑍 −1. 3) If both
the shutter counter and 𝑃𝑐𝑢𝑟 are 0, we find the first non-zero pixel

counter before 𝑃𝑐𝑢𝑟 , which is denoted by 𝑃∗. Then we decrement

𝑃∗ by 1 and set the shutter counter to 𝑐𝑍 −1.
Analysis: The error of MicroSketch comes from three parts: 1) the

fixed window algorithm to which MicroSketch is applied; 2) the esti-

mation of Δ𝑓 ; 3) the rounding error (The difference between the real

value and the value after rounding) of pixel counters. For the first

part, because MicroSketch can be applied to many algorithms, we

can choose the best existing fixed window algorithm to minimize it.

For the second part, we can increase𝑇 (the number of sub-windows

in a sliding window) to decrease it. For the third part, we can give

more space to each pixel counter (i.e., increase 𝑙) to decrease it. In-

creasing 𝑇 or 𝑙 is a trade-off between memory usage and accuracy.

3.3 Optimizations: Unbiased Rounding
In Section 3.2, we mentioned that when we halve a pixel counter

in the zoom-out operation, the rounding error will occur when the

counter value is not the multiples of 𝑐 . The reason is that after the

division of 𝑐 , the counter value cannot be represented by an integer.

We have two straightforward options: always round up the pixel

counter, bringing an overestimation rounding error, and always

round down the pixel counter, bringing an underestimation round-

ing error. To minimize the error, we propose the unbiased method:

When we divide a pixel counter 𝑃 [𝑖] by 𝑐 , if 𝑃 [𝑖] 𝑚𝑜𝑑 𝑐 ≠ 0, we

round it up with the probability of
𝑃 [𝑖] 𝑚𝑜𝑑 𝑐

𝑐 . Otherwise, we round

it down. In this way, we obtain an unbiased rounding error, which is

more accurate than always rounding up or always rounding down.

2
It does not imply that we can simultaneously provide overestimation and

underestimation for the target frequency 𝑓 .

MicroscopeSketch: Accurate Sliding Estimation Using Adaptive Zooming KDD ’23, August 6–10, 2023, Long Beach, CA, USA

IX VIII VII VI V IV III II IXXI𝑻𝑻 = 𝟖𝟖

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝑾𝑾

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

expired active current sub-window

V IV III II I X IX VIII VII VI

Zooming counter 𝒁𝒁 ++ = 𝟒𝟒

𝑷𝑷[10]

𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄𝒄𝒄𝒕𝒕𝒄𝒄

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

58/2
=29

180/2
=90

5/2
≈3

15/2
≈8

256/2
=128 0

120/2
=60

200/2
=100

18/2
=9

57/2
≈24

255
𝑷𝑷[4]

256

+1 overflow
Step 1: Halve all tiny counters 𝑷𝑷

𝑷𝑷[4]
Step 2: Zooming counter 𝒁𝒁++

The operation of Zooming in

Figure 1: An example of MicroscopeSketch (𝑐 = 2). 𝐼 ∼ 𝑋𝐼
are ten sub-windows. 𝐼 is the current sub-window. We
use 8 bits for each pixel counter, so their maximum
value is 255. After insertion, the value of 𝑃 [4] is going
to be 256, which will cause an overflow. Therefore, we
increment the zooming counter by 1 and halve all pixel
counters. If we query at this time, the frequency is
(29+90+3+8+128+0+60+100+9+24)×24=7216.

4 APPLYING MICROSCOPE TO THREE TASKS
4.1 Frequency Estimation
4.1.1 MicroscopeSketch-CM sketch.

To estimate the frequency of items in a data stream, the Count-

Min sketch [23] (CM sketch) is a well-known and effective data

structure, thanks to its modest memory usage and high accuracy.

The data structure of a CM sketch consists of 𝑑 (e.g., 𝑑 =3) counter
arrays 𝐷1,𝐷2,···,𝐷𝑑 , and 𝑑 hash functions ℎ1 (.),ℎ2 (.),···,ℎ𝑑 . The size
of each counter array is𝑚. Each item 𝑒 is mapped to 𝑑 counters,

which are 𝐷𝑖 [ℎ𝑖 (𝑒) mod𝑤] (1⩽ 𝑖⩽𝑑), where 𝐷𝑖 [𝑗] refers to the

𝑗𝑡ℎ counter in array 𝐷𝑖 . When inserting an item 𝑒 , the 𝑑 mapped

counters of 𝑒 are incremented by 1. When querying the frequency

of 𝑒 , the minimal value of the 𝑑 mapped counters is reported as the

estimated frequency. The reason of reporting the minimal value is,

because the CM sketch always overestimates items, the minimal

value has the smallest error.

The CM sketch naturally supports frequency estimation in fixed

windows. To adapt it to sliding windows, we use a MicroSketch to

replace each counter of the CM sketch. We call this adapted CM

sketch MicroSketch-CM. The operations of the MicroSketch-CM

are similar to the CM sketch. Specifically, each item has 𝑑 mapped

MicroSketches.

Insertion:When inserting an item, we first use the insertion op-

eration of the CM. When incrementing a mapped MicroSketch, we

use the insertion operation of the MicroSketch.

Query:When querying the frequency of an item, we use the query

operation of the CM sketch to get 𝑑 mapped MicroSketches. We

report the frequency of the smallest MicroSketch’s estimation by

using the query operation of the MicroSketch. MicroSketch-CM

can achieve the only overestimation by using the overestimation

query of MicroSketch.

4.1.2 MicroscopeSketch-CU sketch. The CU sketch [6] slightly

modifies the CM sketch’s insertion operation and can reduce its

error significantly. When inserting item 𝑒 , the CU sketch incre-

ments the smallest counter among the 𝑑 mapped counters of 𝑒 by

1. To adapt it to sliding windows, we use a MicroSketch to replace

each counter of the CU sketch. We call this adapted CU sketch

MicroSketch-CU. The operations of the MicroSketch-CU are sim-

ilar to the MicroSketch-CM. There are three modifications, though:

1) When inserting an item 𝑒 , we increment the MicroSketch with

the smallest frequency in the current sub-window among the 𝑑

mapped ones. The frequency in the current counter is 𝑆+𝑃𝑐𝑢𝑟 ×𝑐𝑍 ;
2) We clear the shutter counter 𝑆 at the end of each sub-window and

increment 𝑃𝑐𝑢𝑟 by 1 with probability
𝑆
𝑐𝑍

; 3) When querying an item

𝑒 , we report the sum of three parts: the smallest shutter counter

𝑆 among the 𝑑 mapped ones, the sum of 𝑃𝑖 in the recent 𝑇 sub-

windows, and the smallest Δ𝑓 among the 𝑑 mapped ones, where 𝑃𝑖

is the smallest pixel counter in the 𝑖𝑡ℎ sub-window among the 𝑑 Mi-

croSketches. MicroSketch-CU can achieve the only overestimation

by using the overestimation query of MicroSketch.

4.2 Finding Top-k Frequent Items
4.2.1 MicroscopeSketch-HeavyGuardian.

Among existing works for finding the top-𝑘 items in a data

stream, HeavyGuardian [31] achieves very high accuracy with

small memory usage. The key idea of HeavyGuardian is to split the

top-𝑘 items away from the others. To achieve this, it randomly di-

vides items into different buckets through hashing. In each bucket, it

uses 𝜃 (e.g., 𝜃 =8) key-value (KV) pairs ⟨𝐼𝐷,𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦⟩ to maintain

the statistics of the 𝜃 most frequent items. Among the 𝜃 recorded

frequent items, the most frequent one is called the king, while the
others are called the guardians. For each new item, the weakest

guardian (the guardian with the lowest frequency) might be de-

cayed with a probability, called Exponential Decay. When a guardian

cell becomes 0, the new item will be recorded there.

We adapt HeavyGuardian using MicroSketch to find the top-𝑘

frequent items in sliding windows. We use a MicroSketch to replace

each value of the KV pairs in HeavyGuardian. We call the new data

structureMicroSketch-HG.
Insertion: When inserting an item 𝑒 , we first use a hash function

ℎ(𝑒) to map 𝑒 to a bucket. Now assume that 𝑒 is mapped to the 𝑖𝑡ℎ

bucket. Then, there are three cases.

• 1: If 𝑒 already exists in the bucket, its frequency will be increased

by using the Insertion operation of MicroSketch.

• 2: If 𝑒 is not recorded in the bucket, but the bucket has an empty

cell, 𝑒 will be inserted into the empty cell with a frequency of 1.

• 3: If 𝑒 is not recorded in the bucket and the bucket is full, we will

decay the weakest guardian with a probability. Assuming that the

frequency of the weakest MicroSketch guardian is 𝑓 ∗
𝑖
, we use the

deletion operation of MicroSketch to decrease 𝑓 ∗
𝑖
by 1 with proba-

bility 𝛽−𝑓
∗
𝑖 where 𝛽 is a constant (e.g., 𝛽 =1.08). After the decay, if

𝑓 ∗
𝑖
becomes 0, we insert 𝑒 into the weakest MicroSketch guardian.

Top-𝑘 Report: To get the top-𝑘 frequent items from MicroSketch-

HG, we traverse all KV pairs and report the 𝑘 KV pairs with the

highest frequency. MicroSketch-HG can achieve the only underes-

timation by using the underestimation query of MicroSketch.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhan Wu et al.

4.2.2 MicroscopeSketch-SpaceSaving.
Besides exponential decay, another choice is to use SpaceSaving

to evict the weakest KV pair from a bucket. The main idea of Space-

Saving is to always use the incoming item to replace the weakest

guardian and increment it by 1. We only need to modify the third

case above of MicroSketch-HG as follows: If 𝑒 is not recorded in the
bucket and the bucket is full, we increase the frequency of the weakest
guardian by 1. Then, we replace the ID of the weakest guardian by 𝑒 .
We call the new data structureMicroSketch-SS. MicroSketch-SS

can achieve the only overestimation by using the overestimation

query of MicroSketch.

4.3 Finding Top-k Heavy Changes
To find heavy changes in sliding windows, we still use the data

structure and operations of MicroSketch-HG. However, we need
a slight modification to the MicroSketch data structure. We extend

the number of pixel counters to 2𝑇 + 2, where 𝑇 is the number

of sub-windows of the sliding window. Assume that the current

time is 𝑡 , we compute the frequency of 𝑒 in the sliding window

ranging from time 𝑡−2·𝑊 to 𝑡−𝑊 , which is denoted by
ˆ𝑓1, and the

frequency from time 𝑡−𝑊 to 𝑡 , which is denoted by
ˆ𝑓2, using the

query operation of MicroSketch.

Top-𝑘 Report: To get the top-𝑘 heavy changes from MicroSketch-

HG, we traverse all KV pairs and report the 𝑘 KV pairs whose

| ˆ𝑓1− ˆ𝑓2 | is highest.

5 MICROSCOPESKETCH ERROR ANALYSIS
Due to space limitation, the contents of error analysis are pro-

vided in our GitHub repository [48]. We will first show how Mi-

croSketch can achieve either overestimation or underestimation by

using different querying strategies. We also prove that MicroSketch

can achieve unbiased rounding error and show its variance. In ad-

dition, under the assumption of stable frequency at the edge of the

sliding window, we prove that the estimation by MicroSketch is

unbiased and show the error bound.

6 EXPERIMENT RESULTS
In this section, we evaluate the performance of MicroSketch for

three tasks: frequency estimation, finding top-𝑘 frequent items, and

finding top-𝑘 heavy changes. Due to the space constraints, we have

placed the experiment results for selecting the optimal parame-

ters for MicroSketch in our Appendix. The relevant source code is

available in our GitHub repository [48].

6.1 Experiment Setup
Server: Our experiments are performed on a computer with a 6-

core CPU (12 threads, Intel(R) Core(TM) i7-8750H CPU@ 2.20GHz).

Each core has three levels of caches: 384KB L1 cache, 1.5MB L2

cache, and 9MB L3 cache.

Datasets: We use four kinds of datasets in our experiments: the

CAIDA anonymized Internet traces, the IMC data center traffic

traces, synthetic stream datasets that follow a Zipf distribution, and

the Web Page dataset of distinct terms in a web page. We show

their frequency distributions in Figure 2.

0 1000 2000 3000 4000
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

CAIDA
Web Page
IMC

(a) CAIDA, Web Page and IMC.

0 100 200 300 400
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

=0.3
=0.9
=3.0

(b) Zipf.

Figure 2: Distribution of studied datasets.

1) CAIDA: This is a set of IP packet streams, coming from the

CAIDA Anonymized Internet Trace 2018 [61]. Each item is a

packet in the stream, distinguished by its 5-tuple (13 bytes), i.e.,
the combination of source/destination IP addresses, source/

destination ports and protocol type. Each trace contains about

27M items with around 1.3M total distinct items.

2) IMC: The second dataset comes from one of the data centers

studied in Network Traffic Characteristics of Data Centers in
the Wild [62]. Similar to the CAIDA traces, each item ID is a

5-tuple. There are about 14M items in the IMC dataset, with

around 3.3M total distinct items.

3) Zipf: We also generate three synthetic datasets following the

Zipf distribution. The skewness (denoted by 𝛼) varies from

0.3 to 3.0. 4-byte IDs distinguish items in this dataset. There

are about 32M items in this dataset, with around 1∼10M total

distinct items depending on the skewness.

4) Web Page: We build the fourth dataset from a collection of

web pages. The Web Page dataset is downloaded from the

website
3
. Each item (4 bytes) represents the number of distinct

terms in a web page.

Algorithm Comparisons and Implementations: Experiments

were carried out for three tasks. All queries in the experiments

are made once every
1

100
sliding window to test the average per-

formance of different algorithms. For MicroSketch, to fit different

memory settings, we only change the number of counters and fix

all remaining parameters. We show the algorithms compared to

ours in each task below.

• Frequency Estimation: We choose the state-of-the-art, Sliding

sketches [45], SHE [44], and ECM [54], for comparison. Sliding

sketches is a framework that can be used on different algo-

rithms. We combine Sliding sketches (Sl) [45] with CM and CU

(Sl-CM, Sl-CU) for comparison. According to the results of the

ECM original paper, to achieve high accuracy, the parameter

𝑢 in EH [41] is set to 2. We set the number of hash functions

to 3 in every algorithm.

• Finding Top-𝑘 Frequent Items: We compare with the state-of-

the-art algorithms: Sliding sketches with HeavyKeeper (Sl-HK)

[56], and WCSS [55].

• Finding Top-𝑘 Heavy Changes: We evaluate the MicroSketch-

HG under different memory sizes. In this case, we cannot

3
http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/

MicroscopeSketch: Accurate Sliding Estimation Using Adaptive Zooming KDD ’23, August 6–10, 2023, Long Beach, CA, USA

1 2 3 4 5
Memory (MB)

100

101

102

103

104

AA
E

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM
SHE

(a) AAE v.s. Algorithms (Count-Based)

100 200 300 400 500
Memory (KB)

100

101

102

103

104

105

106

AA
E

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM
SHE

(b) AAE v.s. Algorithms (Time-Based)

C A I D A I M C z i p f 0 0 6 z i p f 0 1 8 z i p f 0 3 00

5

1 0

1 5

AA
E

D a t a s e t

 O u r s - C M
 O u r s - C U

(c) AAE v.s. Datasets (d) AAE v.s. query strategies

Figure 3: Performance of algorithms and query strategies on the frequency estimation task on CAIDA.

8 0 1 6 0 3 2 0 6 4 00 . 0 0
0 . 0 3
0 . 0 6
0 . 0 90 . 2 2
0 . 2 3
0 . 2 4

AR
E

M e m o r y (K B)

 O u r s - H G O u r s - S S
 S I - H K W C S S

(a) ARE v.s. Algorithms.

8 0 1 6 0 3 2 0 6 4 00 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1

RR

M e m o r y (K B)

 O u r s - H G O u r s - S S
 S I - H K W C S S

(b) RR v.s. Algorithms.

8 0 1 6 0 3 2 0 6 4 00

2

4

6

8

Sp
ped

(M
op

s)
M e m o r y (K B)

 O u r s - H G O u r s - S S
 S I - H K W C S S

(c) Speed v.s. Algorithms.

C A I D A I M C z i p f 0 0 6 z i p f 0 1 8 z i p f 0 3 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

AR
E

D a t a s e t

 O u r s - H G
 O u r s - S S

(d) ARE v.s. Datasets.

Figure 4: Performance of algorithms on the top-𝑘 task on CAIDA.

C M C M C U C U0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5 o v e r e s t i m a t e d
 u n b i a s e d

q u e r y - s t r a t e g y

AR
E

Figure 5: Query strate-
gies on the top-𝑘 task on
CAIDA.

0 1 0 2 0 4 0 8 0 1 6 0 3 2 00 . 0

0 . 3

0 . 6

0 . 9

1 . 2

RR

M e m o r y (K B)

 O u r s - H G
 S t r a w m a n - H G

(a) RR v.s. Algorithms.

0 1 0 2 0 4 0 8 0 1 6 0 3 2 02 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5

Sp
eed

(M
op

s)

M e m o r y (K B)

 O u r s - H G
 S t r a w m a n - H G

(b) Speed v.s. Algorithms.

C A I D A I M C z i p f 0 1 8 z i p f 0 3 00 . 7

0 . 8

0 . 9

1 . 0

RR

D a t a s e t

 O u r s - H G

(c) RR v.s. Datasets.

Figure 6: Performance of algorithms on the heavy change task on CAIDA.

compare our algorithm to the state-of-the-art, because no

existing work so far is able to find heavy changes in sliding

windows. Therefore, we only provide the comparison between

MicroSketch-HG and the straw man solution, which we will

elaborate in Section 6.4.

Metrics: AAE (Average Absolute Error), ARE (Average Relative Er-

ror), RR (Recall Rate) and Speed (the Million operations per second

or Mops).

• AAE (Average Absolute Error):
1

𝑛

∑𝑛
𝑖=1 | ˆ𝑓𝑖− 𝑓𝑖 |, where 𝑛 is the

number of relevant items, 𝑓𝑖 represents the real frequency, and
ˆ𝑓𝑖 represents the estimated frequency.

• ARE (Average Relative Error):
1

𝑛

∑𝑛
𝑖=1
| ˆ𝑓𝑖−𝑓𝑖 |
𝑓𝑖

, where 𝑛 is the

number of relevant items, 𝑓𝑖 represents the real frequency, and
ˆ𝑓𝑖 represents the estimated frequency.

• RR (Recall Rate):
|Ω∩Ψ |
|Ψ | , where Ω is the set of reported top-𝑘

items of frequent items (or heavy changes), and Ψ is the set of

real top-𝑘 frequent items (or heavy changes). RR represents

the ratio of the number of correctly reported top-𝑘 frequent

items (or reported top-𝑘 heavy change items) to 𝑘 .

• Speed: We test the Million operations (insertions) per second

(Mops) of different algorithms.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhan Wu et al.

100 200 300 400 500
Memory (KB)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
A

E

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(a) AAE on IMC

100 200 300 400 500
Memory (KB)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
A

E

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(b) AAE on Zipf-0.3

100 200 300 400 500
Memory (KB)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
A

E

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(c) AAE on Zipf-3.0

100 200 300 400 500
Memory (KB)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
A

E

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(d) AAE on Webpage

Figure 7: Accuracy comparison experiments for frequency estimation tasks across various datasets.

100 200 300 400 500
Memory (KB)

0

2

4

6

8

10

Sp
ee

d
(M

op
s)

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(a) Speed on CAIDA

200 400
Memory (KB)

0

5

10

15

Sp
ee

d
(M

op
s)

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(b) Speed on IMC

200 400
Memory (KB)

0

5

10

15

Sp
ee

d
(M

op
s)

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(c) Speed on Zipf-3.0

200 400
Memory (KB)

0

5

10

15

Sp
ee

d
(M

op
s)

Ours-CU
SI-CU
ECM

Ours-CM
SI-CM

(d) Speed on Webpage

Figure 8: Speed comparison experiments for frequency estimation tasks across various datasets.

80 160 320 640
Memory (KB)

0.2

0.4

0.6

0.8

1.0

R
R

Ours-HG
SI-HK

Ours-SS
WCSS

(a) RR on IMC

80 160 320 640
Memory (KB)

0.2

0.4

0.6

0.8

1.0

R
R

Ours-HG
SI-HK

Ours-SS
WCSS

(b) RR on Zipf-0.3

80 160 320 640
Memory (KB)

0.2

0.4

0.6

0.8

1.0

R
R

Ours-HG
SI-HK

Ours-SS
WCSS

(c) RR on Zipf-3.0

80 160 320 640
Memory (KB)

0.2

0.4

0.6

0.8

1.0

R
R

Ours-HG
SI-HK

Ours-SS
WCSS

(d) RR on Webpage

Figure 9: Accuracy comparison experiments for top-𝑘 tasks across various datasets.

6.2 Frequency Estimation
We compare six algorithms: MicroSketch-CM, MicroSketch-CU,

Sl-CM, Sl-CU, SHE, and ECM, in the count-based model and time-

based model. The sliding window size is set to 1M packets. Different

datasets are used to compare the algorithms’ AAE and speed under

five different memory sizes. We also show the robust performance

of MicroSketch-CM and MicroSketch-CU on different datasets.

The reason for using AAE in the task of estimating frequency is

that, for infrequent items, e.g., a frequency of 5, an error of 500 leads

to an RE (relative error) of 100, which will significantly increase the

ARE (average relative error). However, for frequent items, e.g., of

frequency 5000, an error of 500 only leads to an RE of 0.1. This makes

the infrequent items have to be high in ARE. In practice, frequent

items are more important. Therefore, compared to ARE, AAE is bet-

ter at describing the algorithms’ accuracy in frequency estimation.

MicroSketch-CM, MicroSketch-CU v.s. Sl-CM, Sl-CU, ECM
(Figure 3(a), 3(b), 7, 8). MicroSketch-CM and MicroSketch-CU

achieve both lower AAE and faster speed than Sl-CU, Sl-CM, SHE

and ECM. On CAIDA dataset, MicroSketch achieves about 130∼200
times smaller error rate and about 6.96∼ 8.65 times faster speed

compared to ECM. Compared to Sliding sketches, MicroSketch

achieves 2.23∼5.06 times smaller error rate and 1.36∼1.95 times

faster speed. Compared to SHE, MicroSketch achieves 19.2∼29.5
times smaller error rate. On other datasets, MicroSketch always

achieves smaller error rate and faster speed compared to ECM, SHE

and Sliding sketches in all memory settings.

MicroscopeSketch: Accurate Sliding Estimation Using Adaptive Zooming KDD ’23, August 6–10, 2023, Long Beach, CA, USA

MicroSketch-CM, MicroSketch-CU v.s. Dataset (Figure 3(c)).
We find that the AAE of MicroSketch-CM is lower than 13, and

MicroSketch-CU’s AAE is lower than 8 on all datasets. For frequent

items, which usually have a frequency higher than a thousand in

a sliding window, the AAE of 13 or 8 is relatively small and has a

limited impact.

MicroSketch-CM, MicroSketch-CU v.s. Query Strategy (Fig-
ure 3(d)). We find that the AAE of the overestimated version of

MicroSketch-CM and MicroSketch-CU is about 13 and 11, respec-

tively, while the unbiased version’s AAE is about 4 and 3.

Summary and Analysis: According to the above results, com-

pared to the state-of-the-art Sliding sketches, MicroSketch achieves

2.23∼ 5.06 times smaller AAE and 1.36∼ 1.95 times faster speed.

Also, compared to ECM, MicroSketch achieves 130 ∼ 200 times

smaller AAE and 6.96∼8.65 times faster speed. Compared to SHE,

MicroSketch achieves 19.2∼29.5 times smaller AAE. Such an im-

provement stems from adaptive zooming, which improve memory

efficiency.

6.3 Finding Top-k Frequent Items
We use RR, ARE, and speed to evaluate the performance of

MicroSketch-HG, MicroSketch-SS, Sl-HK, and WCSS, in finding

the top-500 frequent items. Since WCSS only works in the count-

based windowmodel, we also use the count-based model and set the

window size to 1M packets. We first compare the 4 algorithms under

4 different memory settings using the CAIDA dataset. Then, we test

the robustness of MicroSketch-HG and MicroSketch-SS on various

datasets, including CAIDA, IMC, and Zipf with varying skewness.

MicroSketch-HG, MicroSketch-SS v.s. Sl-HK, WCSS (Figure
4(a), 4(b), 4(c), 9). Our results show that MicroSketch-HG and

MicroSketch-SS beat Sl-HK and WCSS in most cases. On CAIDA

dataset, compared to Sl-HK and WCSS, MicroSketch-HG achieves

at most 7 times and 15 times smaller error rate with at most 5.22

times and 2.25 faster speed, respectively, while MicroSketch-SS

achieves at most 4 times and 9.65 times smaller error rate with at

most 5.57 times and 2.94 times faster speed.

From Figure 4(a), we observe that MicroSketch-HG performs

the best for all memory sizes in terms of ARE and MicroSketch-SS

also performs better than WCSS and Sl-HK. From Figure 4(b), we

observe that MicroSketch-HG and MicroSketch-SS obtain a rela-

tively higher RR than others when memory is small. When the

memory size reaches 320KB, all algorithms’ RR reaches 97%. From

Figure 4(c), we observe that MicroSketch-HG and MicroSketch-SS

reach about 5 Mops, higher than others in all memory settings.

From Figure 9, we observe that on IMC, Zipf-3.0 and Webpage,

MicroSketch-HG and MicroSketch-SS perform better than Sl-HK

in all memory settings and better than WCSS when memory is

tight. On Zipf-0.3, when the memory size reaches 320KB, the RR of

MicroSketch-HG and MicroSketch-SS reach around 98.5%, beating

the other two algorithms.

MicroSketch-HG, MicroSketch-SS v.s. Dataset (Figure 4(d)).
Our results show that, under a memory size of 640KB, MicroSketch-

HG achieves an ARE lower than 0.015 and MicroSketch-SS lower

than 0.032 on all datasets. From Figure 4(d), on the IMC dataset,

we observe a higher ARE for the algorithms, which comes from

the flatter distribution of this dataset, i.e., it is harder to distinguish

frequent items well in this dataset.

MicroSketch-HG,MicroSketch-SS v.s.Query Strategy (Figure
5).We find that the ARE of underestimated MicroSketch-HG and

overestimated MicroSketch-SS is about 0.04 and 0.12, respectively,

while the unbiased version’s ARE is about 0.01 and 0.02.

Summary andAnalysis: Compared with Sl-HK, MicroSketch-HG

achieves 5.6∼7.2 times smaller error rate and 3.8∼5.2 times faster

speed, while MicroSketch-SS achieves 3.56∼4 times smaller error

rate and 4.97 ∼ 5.57 times faster speed. Compared with WCSS,

MicroSketch-HG achieves 3 ∼ 15.1 times smaller error rate and

1.61∼2.25 times faster speed, while MicroSketch-SS achieves 1.7∼
9.6 times smaller error rate and 1.73∼2.94 times faster speed.We use

adaptive zooming and therefore achieve better memory efficiency.

6.4 Finding Top-k Heavy Changes
We show the performance of MicroSketch-HG and our straw

man solution to find the top-500 heavy changes in CAIDA datasets.

The strawman solution splits the sliding window into sub-windows

and keeps a counter for each sub-window. The difference between

the straw man solution and MicroSketch-HG is that MicroSketch-

HG additionally uses quantization and adaptive zooming in the

frequency dimension. In this experiment, the window size is set to

1M packets. We test the robustness of MicroSketch-HG on various

datasets, including CAIDA, IMC, and Zipf with varying skewness.

In Figure 6, our results show that the technique we use in

MicroSketch-HG improves accuracy, especially when the memory

is limited. Also, MicroSketch-HG is faster than the straw man

solution. We also observe that MicroSketch-HG reaches more than

78% RR in Zipf datasets and more than 91% in CAIDA and IMC

datasets when the memory setting is 320KB.

7 CONCLUSION
In this paper, we focus on approximate statistics estimation in

data streams using sliding windows. We propose a generic frame-

work, MicroscopeSketch, and its key technique, adaptive zooming

for estimation in sliding windows. MicroscopeSketch achieves high

accuracy with limited memory usage, making it more suitable for a

wide set of practical applications. We apply it to several well-known

algorithms on multiple tasks, including estimating frequency, find-

ing top-𝑘 frequent items, and finding top-𝑘 heavy changes. We also

analyze its error bound, its unilateral error, and unbiased rounding

error. We conduct experiments on the three tasks using multiple

datasets. Compared to existing works, we find that MicroscopeS-

ketch’s error is around 4 times smaller in estimating the frequency

and around 3 times smaller in finding top-𝑘 items.

ACKNOWLEDGMENT
We thank all anonymous reviewers for their help in improv-

ing this paper. This work is supported by Key-Area Research and

Development Program of Guangdong Province 2020B0101390001,

and National Natural Science Foundation of China (NSFC) (No.

U20A20179 and 61832001).

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhan Wu et al.

REFERENCES
[1] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. Spotlight:

Detecting anomalies in streaming graphs. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1378–1386, 2018.

[2] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui.

Burstsketch: Finding bursts in data streams. In SIGMOD, 2021.
[3] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. Fast memory-efficient

anomaly detection in streaming heterogeneous graphs. In SIGKDD, 2016.
[4] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, Peter Steenkiste,

G Liu, A Li, C Canel, AA Philip, R Ware, et al. Sketchlib: Enabling efficient

sketch-based monitoring on programmable switches. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), pages 743–759, 2022.

[5] Rui Ding, Shibo Yang, Xiang Chen, and Qun Huang. Bitsense: Universal and

nearly zero-error optimization for sketch counters with compressive sensing.

In Proc. of SIGCOMM, 2023.

[6] Cristian Estan and George Varghese. New directions in traffic measurement

and accounting. SIGMCOMM Conference, 2002.
[7] Florin Rusu and Alin Dobra. Sketches for size of join estimation. ACM

Transactions on Database Systems (TODS), 33(3):1–46, 2008.
[8] Aécio Santos, Aline Bessa, Fernando Chirigati, and etal. Correlation sketches

for approximate join-correlation queries. In SIGMOD, 2021.
[9] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and etal. Sketching linear classifiers

over data streams. In SIGMOD Conference, 2018.
[10] Zhewei Wei, Ge Luo, Ke Yi, and etal. Persistent data sketching. In SIGMOD

Conference, 2015.
[11] Yanqing Peng, Jinwei Guo, Feifei Li, and etal. Persistent bloom filter: Membership

testing for the entire history. In SIGMOD Conference, 2018.
[12] Benwei Shi, Zhuoyue Zhao, Yanqing Peng, Feifei Li, and Jeff M Phillips.

At-the-time and back-in-time persistent sketches. In SIGMOD, 2021.
[13] Anshumali Shrivastava, Arnd Christian Konig, and etal. Time adaptive sketches

(ada-sketches) for summarizing data streams. In SIGMOD, 2016.
[14] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and etal. Finding persistent

items in data streams. VLDB Endowment, 2016.
[15] Takuya Akiba and Yosuke Yano. Compact and scalable graph neighborhood

sketching. In SIGKDD, 2016.
[16] PinghuiWang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, ChenxuWang, John CS

Lui, and Xiaohong Guan. A memory-efficient sketch method for estimating high

similarities in streaming sets. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pages 25–33, 2019.

[17] Runze Lei, Pinghui Wang, Rundong Li, and etal. Fast rotation kernel density

estimation over data streams. In SIGKDD, 2021.
[18] Dingqi Yang, Paolo Rosso, Bin Li, and etal. Nodesketch: Highly-efficient graph

embeddings via recursive sketching. In SIGKDD, 2019.
[19] Rundong Li, Pinghui Wang, Jiongli Zhu, Junzhou Zhao, Jia Di, Xiaofei Yang,

and Kai Ye. Building fast and compact sketches for approximately multi-set

multi-membership querying. In SIGMOD, 2021.
[20] Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-

Colton, and Rob Johnson. Vector quotient filters: Overcoming the time/space

trade-off in filter design. In SIGMOD, 2021.
[21] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and etal. Compass: Online

sketch-based query optimization for in-memory databases. In SIGMOD, 2021.
[22] Peng Jia, Pinghui Wang, Junzhou Zhao, Shuo Zhang, Yiyan Qi, Min Hu, Chao

Deng, and Xiaohong Guan. Bidirectionally densifying lsh sketches with empty

bins. In SIGMOD, 2021.
[23] Graham Cormode and S Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 2005.
[24] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items

in data streams. In Automata, Languages and Programming. Springer, 2002.
[25] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and

more accurate stream processing. In SIGMOD Conference, 2016.
[26] M. Gurmeet Singh and M. Rajeev. Approximate frequency counts over data

streams. In VLDB, 2002.
[27] Bohan Zhao, Xiang Li, Boyu Tian, and etal. Dhs: Adaptive memory layout

organization of sketch slots for fast and accurate data stream processing. In

SIGKDD, 2021.
[28] Ran Ben-Basat, Gil Einziger, and etal. Randomized admission policy for efficient

top-k and frequency estimation. In INFOCOM Conference, 2017.
[29] Daniel Ting. Data sketches for disaggregated subset sum and frequent item

estimation. In SIGMOD Conference, 2018.
[30] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation

of frequent and top-k elements in data streams. In ICDT, 2005.
[31] Tong Yang, Junzhi Gong, Haowei Zhang, and etal. Heavyguardian: Separate

and guard hot items in data streams. In SIGKDD Conference, 2018.
[32] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketchlearn: relieving user

burdens in approximate measurement with automated statistical inference. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 576–590, 2018.

[33] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,

Peter A Dinda, Ming-Yang Kao, and Gokhan Memik. Reversible sketches:

enabling monitoring and analysis over high-speed data streams. IEEE/ACM
Transactions on Networking, 15(5):1059–1072, 2007.

[34] K. Balachander, S. Subhabrata, Z. Yin, and etal. Sketch-based change detection:

methods, evaluation, and applications. In IMC, 2003.
[35] Daniel Ting. Count-min: Optimal estimation and tight error bounds using

empirical error distributions. In SIGKDD, 2018.
[36] Daniel Ting, Jonathan Malkin, and Lee Rhodes. Data sketching for real time

analytics: Theory and practice. In SIGKDD, 2020.
[37] Tong Yang, Jie Jiang, Peng Liu, and etal. Elastic sketch: Adaptive and fast

network-wide measurements. In SIGCOMM Conference, 2018.
[38] Yikai Zhao, Wenchen Han, Zheng Zhong, Yinda Zhang, Tong Yang, and Bin Cui.

Double-anonymous sketch: Achieving fairness for finding global top-k frequent

items. In Proc. of ACM SIGMOD, 2023.
[39] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu. Precise

error estimation for sketch-based flow measurement. In Proceedings of the 21st
ACM Internet Measurement Conference, pages 113–121, 2021.

[40] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. Stingy sketch: a

sketch framework for accurate and fast frequency estimation. Proceedings of
the VLDB Endowment, 15(7):1426–1438, 2022.

[41] Mayur Datar, Aristides Gionis, Piotr Indyk, and etal. Maintaining stream

statistics over sliding windows. SICOMP, 2002.
[42] Nicoló Rivetti, Yann Busnel, and Achour Mostefaoui. Efficiently summarizing

data streams over sliding windows. In 2015 IEEE 14th International Symposium
on Network Computing and Applications, pages 151–158. IEEE, 2015.

[43] Chunyao Song, Xuanming Liu, Tingjian Ge, and Yao Ge. Top-k frequent items

and item frequency tracking over sliding windows of any size. Information
Sciences, 2019.

[44] Yuhan Wu, Zhuochen Fan, Qilong Shi, Yixin Zhang, Tong Yang, Cheng Chen,

Zheng Zhong, Junnan Li, Ariel Shtul, and Yaofeng Tu. She: A generic framework

for data stream mining over sliding windows. In Proceedings of the 51st
International Conference on Parallel Processing, pages 1–12, 2022.

[45] Xiangyang Gou, Long He, Yinda Zhang, and etal. Sliding sketches: A framework

using time zones for data stream processing in sliding windows. In SIGKDD
Conference, 2020.

[46] EranAssaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. Pay for a sliding bloom

filter and get counting, distinct elements, and entropy for free. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pages 2204–2212. IEEE, 2018.

[47] Xiangyang Gou, Yinda Zhang, Zhoujing Hu, Long He, Ke Wang, Xilai Liu,

Tong Yang, Yi Wang, and Bin Cui. A sketch framework for approximate data

stream processing in sliding windows. IEEE Transactions on Knowledge and Data
Engineering, 2022.

[48] The source codes related to microscopesketch. https://github.com/

MicroscopeSketch/MicroscopeSketch.

[49] Tong Yang, Yang Zhou, Hao Jin, and etal. Pyramid sketch: A sketch framework

for frequency estimation of data streams. VLDB Endow., 2017.
[50] Hui Han, Zheng Yan, Xuyang Jing, and Witold Pedrycz. Applications of sketches

in network traffic measurement: A survey. Information Fusion, 82:58–85, 2022.
[51] Zijie Zeng, Lin Cui, Mimi Qian, Zhen Zhang, and KaiminWei. A survey on sliding

window sketch for network measurement. Computer Networks, 226:109696, 2023.
[52] Graham Cormode. Sketch techniques for approximate query processing.

Foundations and Trends in Databases. NOW publishers, 2011.
[53] Rana Shahout, Roy Friedman, and Dolev Adas. Cell: counter estimation for

per-flow traffic in streams and sliding windows. In 2021 IEEE 29th International
Conference on Network Protocols (ICNP), pages 1–12. IEEE, 2021.

[54] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. Sketch-

based querying of distributed sliding-window data streams. arXiv preprint
arXiv:1207.0139, 2012.

[55] Ran Ben-Basat, Gil Einziger, Roy Friedman, and etal. Heavy hitters in streams

and sliding windows. In INFOCOM, 2016.

[56] Tong Yang, Haowei Zhang, Jinyang Li, and etal. Heavykeeper: An accurate

algorithm for finding top-𝑘 elephant flows. TON, 2019.
[57] Er Krishnamurthy, Subhabrata Sen, and Yin Zhang. Sketchbased change

detection: Methods, evaluation, and applications. In Proc. ACM SIGCOMM
Internet Measurement Conference, 2003.

[58] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches

for efficient and accurate change detection over network data streams. In Proc.
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, 2004.

[59] Monika Rauch Henzinger. Algorithmic challenges in web search engines.

Internet Mathematics,, 1(1):115–123, 2004.
[60] Chung Chen and Lon-Mu Liu. Forecasting time series with outliers. Journal

of Forecasting, 12(1):13–35, 1993.
[61] The CAIDA UCSD Anonymized Internet Traces Dataset - 2018.03.15.

http://www.caida.org/data/passive/passive_dataset.xml.

[62] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic

characteristics of data centers in the wild. In SIGCOMM conference, 2010.

https://github.com/MicroscopeSketch/MicroscopeSketch
https://github.com/MicroscopeSketch/MicroscopeSketch
http://www.caida.org/data/passive/passive_dataset.xml

MicroscopeSketch: Accurate Sliding Estimation Using Adaptive Zooming KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0 2 4 6 80

3 0

6 0

9 0

1 2 0

AA
E

T (# s u b - w i n d o w)

 1 0 0 K B 2 0 0 K B
 3 0 0 K B 4 0 0 K B
 5 0 0 K B

(a) AAE v.s. T

0 2 4 6 8

2 0

4 0

6 0

8 0

AA
E

l (# b i t p e r p i x e l c o u n t e r)

 1 0 0 K B 2 0 0 K B
 3 0 0 K B 4 0 0 K B
 5 0 0 K B

(b) AAE v.s. l

Figure 10: Effect of 𝑇 and 𝑙 on MicroSketch-CM.

0 2 4 6 80

3 0

6 0

9 0

AA
E

T (# s u b - w i n d o w)

 1 0 0 K B 2 0 0 K B
 3 0 0 K B 4 0 0 K B
 5 0 0 K B

(a) AAE v.s. T

0 2 4 6 8
1 0
2 0
3 0
4 0
5 0

AA
E

l (# b i t p e r p i x e l c o u n t e r)

 1 0 0 K B 2 0 0 K B
 3 0 0 K B 4 0 0 K B
 5 0 0 K B

(b) AAE v.s. l

Figure 11: Effect of 𝑇 and 𝑙 on MicroSketch-CU.

0 8 1 6 2 4 3 2 4 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

AR
E

T (# s u b - w i n d o w)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(a) ARE v.s. T

0 8 1 6 2 4 3 2 4 00 . 9 3

0 . 9 6

0 . 9 9

1 . 0 2

RR

T (# s u b - w i n d o w)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(b) RR v.s. T

0 4 8 1 2 1 6 2 0
0 . 0 1
0 . 0 2
0 . 0 3
0 . 0 4
0 . 0 5

AR
E

l (# b i t p e r p i x e l c o u n t e r)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(c) ARE v.s. l

0 4 8 1 2 1 6 2 00 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

1 . 0 2

RR

l (# b i t p e r p i x e l c o u n t e r)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(d) RR v.s. l

Figure 12: Effect of 𝑇 and 𝑙 on MicroSketch-HG.

0 4 8 1 2 1 6
0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

AR
E

T (# s u b - w i n d o w)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(a) ARE v.s. T

0 4 8 1 2 1 6
0 . 8 8
0 . 9 2
0 . 9 6
1 . 0 0
1 . 0 4

AR
E

T (# s u b - w i n d o w)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(b) RR v.s. T

0 4 8 1 2 1 6
0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

AR
E

l (# b i t p e r p i x e l c o u n t e r)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(c) ARE v.s. l

0 4 8 1 2 1 6
0 . 9 6

0 . 9 7

0 . 9 8

0 . 9 9

RR
l (# b i t p e r p i x e l c o u n t e r)

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(d) RR v.s. l

Figure 13: Effect of 𝑇 and 𝑙 on MicroSketch-SS.

A EXPERIMENTS ON PARAMETERS
In Frequency Estimation Task, we employ MicroSketch-CM and

MicroSketch-CU. In the figures, we use #sub-window to denote

the number of sub-windows within the sliding window, i.e., the

parameter 𝑇 . Similarly, we use #bit per pixel counter to denote the

number of bits used for each pixel counter, i.e., the parameter 𝑙 . As

shown in Figure 10 and 11, both AAEs increase with 𝑇 , so we set

𝑇 =1. As for 𝑙 , there is not an optimal one, but 𝑙 =4 performs well

on all memory settings. So for both algorithms, we set 𝑙 =4.

In Figure 14, we change 𝑐 from 2 to 16 and find that it has lit-

tle impact on the algorithm performance, since the line is almost

horizontal, especially when the memory is relatively large.

In Finding Top-𝑘 Frequent Items task, we consider MicroSketch-

HG firstly. As shown in Figure 12, at first, the RR goes up, and ARE

goes down when 𝑇 or 𝑙 goes up. This is due to a larger 𝑇 giving

the hopping window a more accurate approximation of the sliding

window, and a larger 𝑙 makes the rounding error of MicroSketch

smaller. However, the RR may go down and ARE go up when the

parameters become too large. The reason is that the counters will

consume much memory and leave little memory to store items.

According to our results, the different memory settings require

different values of 𝑇 and 𝑙 . Moreover, the better values of 𝑇 and 𝑙

grow larger when the memory is larger. Indeed, when we set𝑇 =12

and 𝑙 = 8, RR reaches more than 98%, and ARE goes below 0.014

for all considered memory sizes. Similarly, for MicroSketch-SS, we

choose𝑇 =4 and 𝑙 =6 according to Figure 13. Using these parameters,

MicroSketch-SS’s RR reaches 97.4%, and its ARE goes below 0.026.

In Figure 15, similar to what we do in the frequency estimation

task, we change 𝑐 from 2 to 16 and find that it has little impact on

MicroSketch-HG’s performance, since the line is almost horizontal.

However, for MicroSketch-SS, the smaller the 𝑐 is, the higher the

accuracy, which is consistent with our choice 2.

In Finding Top-𝑘 Heavy Changes, We also have shown that

the change of 𝑐 has little impact on the RR of MicroSketch-HG in

Figure 16.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yuhan Wu et al.

2 4 8 1 60

2 0

4 0

6 0

AA
E

c

 1 0 0 K B 2 0 0 K B
 3 0 0 K B 4 0 0 K B
 5 0 0 K B

(a) MicroSketch-CM

2 4 8 1 60

1 5

3 0

AA
E

 1 0 0 K B 2 0 0 K B
 3 0 0 K B 4 0 0 K B
 5 0 0 K B

c
(b) MicroSketch-CU

Figure 14: Effect of 𝑐 on frequency estimation.

2 4 8 1 6
1 2

1 4

1 6

AR
E

c

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(a) MicroSketch-HG

2 4 8 1 6
0 . 0 2 0

0 . 0 2 2

0 . 0 2 4

0 . 0 2 6

0 . 0 2 8

AR
E

c

 8 0 K B 1 6 0 K B
 3 2 0 K B 6 4 0 K B

(b) MicroSketch-SS

Figure 15: Effect of 𝑐 on top-𝑘 .

2 4 8 1 6

0 . 4

0 . 8

1 . 2

RR

c

 1 0 K B 2 0 K B
 4 0 K B 8 0 K B
 1 6 0 K B 3 2 0 K B

Figure 16: Effect of 𝑐
on heavy change.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Preliminaries
	2.2 Frequency Estimation
	2.3 Finding Top-k Frequent Items
	2.4 Finding Top-k Heavy Changes

	3 The MicroscopeSketch
	3.1 Data Structure
	3.2 Operations
	3.3 Optimizations: Unbiased Rounding

	4 Applying Microscope to Three Tasks
	4.1 Frequency Estimation
	4.2 Finding Top-k Frequent Items
	4.3 Finding Top-k Heavy Changes

	5 MicroscopeSketch Error Analysis
	6 Experiment results
	6.1 Experiment Setup
	6.2 Frequency Estimation
	6.3 Finding Top-k Frequent Items
	6.4 Finding Top-k Heavy Changes

	7 Conclusion
	References
	A Experiments on Parameters

