
HoppingSketch: More Accurate Temporal
Membership Query and Frequency Query

Zhuochen Fan , Yubo Zhang, Siyuan Dong , Yi Zhou,

Fangyi Liu , Tong Yang ,Member, IEEE,

Steve Uhlig , and Bin Cui , Senior Member, IEEE

Abstract—Nowadays, research on temporal membership queries is

indispensable. Generally, temporal membership queries exist in two modalities:

fixed windows and sliding windows, the latter having obvious advantages. The first

sketch that implements temporal membership queries is the persistent Bloom filter

(PBF). PBF has two shortcomings: it does not support sliding windows nor

frequency queries. Here, we propose HoppingSketch to promote the original PBF.

It is the first sketch that implements temporal membership queries for sliding

windows. HoppingSketch is a general and efficient data stream processing

framework, able to implement different tasks thanks to different atomic sketches.

When the atomic sketches are Bloom filters and we apply them to PBF,

HoppingSketch can achieve significantly higher temporal membership query

accuracy than the original PBF. When the atomic sketches are sketches of Count-

Min, Conservative Update, and Count, HoppingSketch can achieve more accurate

frequency query than by applying PBF on the corresponding sketches. Our

experimental results demonstrate the advantages of HoppingSketch compared

with the state-of-the-art.

Index Terms—Data streams, frequency query, sketch, sliding windows, temporal

membership query

Ç

1 INTRODUCTION

1.1 Background and Motivation

Membership queries refer to querying whether an item occurs in a
set. Among membership queries, temporal membership queries
play an increasingly important role. We first introduce the defini-
tion of temporal membership query. Given an item e and a time
range ½ti; tj� � ½1; T �, a temporal membership query refers to query-
ing whether an item e appears within time range ½ti; tj�, where T is
the upper bound on the time dimension. For example, the system
administrator of a website wants to know whether the IP address
of interest has visited the website within an specific time range [1].

Temporal membership queries exist in twomodalities: fixedwin-
dows and sliding windows. Fixed windows refer to dividing the
data stream into a series of windows of the same size in terms of
time or number of items, and each window has independent statis-
tics. Sliding windows refer to the statistics of the most recent time
window or a certain number of most recent items [2]. In practice,

sliding windows often have clear advantages over fixed windows.
For example, heavy hitters detection [3] is an important task, i.e.,
finding the itemswhose frequency is larger than a predefined thresh-
old. With fixed windows, heavy hitters will easily be unreported.
Sliding windows can handle such situations well because they are
much more flexible than the fixed windows. Further, they can better
describe and process temporal membership queries. However, it is
more challenging to apply sliding windows to temporal member-
ship queries, because the oldest items need to be found and cleared
in time, which requires higher execution time and space costs.

1.2 Prior Art and Limitations

The recent seminal work, persistent Bloom filter (PBF) [1], defines
temporal membership and proposes a sketch (a kind of probabilis-
tic data structure) composed of many Bloom filters. Therefore,
Bloom filter is a constituent unit of PBF. In this paper, each constit-
uent unit of a larger data structure like this is called an atomic
sketch. Further, PBF uses a tree structure: each node in the tree rep-
resents a period of time, and a Bloom filter is used to store all items
corresponding to this period of time. Its key idea is to decompose
the timestamp in binary and store it in Bloom filters from leaf to
root along the tree. When querying the item, PBF queries from the
root to the leaves. In this way, PBF keeps a low false positive rate
and low memory consumption while implementing temporal
membership queries. Unfortunately, PBF has two shortcomings:
First, it does not support sliding windows. Second, it does not sup-
port frequency queries, i.e., reporting the number of occurrences of
the given items.

1.3 Our Solution and Contributions

The main contributions of this paper are summarized as follows:
We propose HoppingSketch to promote the original PBF. It is a novel
and efficient sketch framework. By proposing the corresponding
sketch-based sliding window algorithms on PBF and further con-
verting atomic sketches, it realizes more accurate temporal mem-
bership queries and frequency queries, respectively.

Specifically, HoppingSketch overcomes two shortcomings of
PBF: (1) Since PBF does not support any sliding window at present,
we naturally adapt sliding window1 to temporal membership
queries for the first time through HoppingSketch, which overcomes
load imbalance and significantly improves accuracy; (2) Since PBF
does not support frequency queries, we design HoppingSketch as a
general framework, which can flexibly implement different tasks by
transforming different atomic sketches. Therefore, we only need to
replace its atomic sketches with sketches of Count-Min (CM) [4],
Conservative Update (CU) [5], Count (C) [6], etc: that support fre-
quency queries, and we can flexibly implement frequency queries.

HoppingSketch consists ofm Bloom filters and maintains kwin-
dows in each Bloom filter. The main challenge is that new items are
easily added, but removing the oldest items in time is challenging
under high-speed and limited memory conditions. To address the
above problems, a simple idea is to clear the information of the old-
est window among the m Bloom filters before allocating freed
memory for the latest window w. This method needs to allocate
many Bloom filters and may suffer load imbalance, and we intro-
duce memory-sharing technique to avoid this issue, see Section 3
for more details. Based on the above methodology, HoppingSketch
is the first solution that implements the temporal membership

� Zhuochen Fan, Yubo Zhang, Siyuan Dong, Yi Zhou, Tong Yang, and Bin Cui are
with the School of Computer Science and National Engineering Laboratory for Big
Data Analysis Technology and Application, Peking University, Beijing 100871,
China. E-mail: {fanzc, zhangyubo18, dongsiyuan, chouti, bin.cui}@pku.edu.cn,
yangtongemail@gmail.com.

� Fangyi Liu is with the School of Computer Science, Beijing University of Posts and
Telecommunications, Beijing 100876, China. E-mail: liufy@bupt.edu.cn.

� Steve Uhlig is with the School of Electronic Engineering and Computer Science,
Queen Mary University of London, E1 4NS London, U.K. E-mail: steve@eecs.qmul.
ac.uk.

Manuscript received 5 June 2022; revised 2 October 2022; accepted 7 November 2022.
Date of publication 10 November 2022; date of current version 8 August 2023.
This work was supported in part by the National Key R&D Program of China under
Grant 2022YFB2901504, and in part by the National Natural Science Foundation of
China (NSFC) under Grants U20A20179, and 61832001.
(Co-primary authors: Zhuochen Fan and Yubo Zhang.)
(Corresponding author: Tong Yang.)
Recommended for acceptance by L. Nie.
Digital Object Identifier no. 10.1109/TKDE.2022.3221111

1. Actually, we use the hopping window to approximate the sliding window.
The difference between sliding windows and hopping windows is: sliding win-
dows always query the past k items, where k is the window size; while hopping
windows divide k items into a whole window, and insert, query, or delete in
units of windows rather than items.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023 9067

1041-4347 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on September 28,2023 at 15:01:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0001-7554-4350
https://orcid.org/0000-0001-7554-4350
https://orcid.org/0000-0001-7554-4350
https://orcid.org/0000-0001-7554-4350
https://orcid.org/0000-0001-7554-4350
https://orcid.org/0000-0002-4843-812X
https://orcid.org/0000-0002-4843-812X
https://orcid.org/0000-0002-4843-812X
https://orcid.org/0000-0002-4843-812X
https://orcid.org/0000-0002-4843-812X
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0001-6251-6836
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0003-1681-4677
mailto:fanzc@pku.edu.cn
mailto:zhangyubo18@pku.edu.cn
mailto:dongsiyuan@pku.edu.cn
mailto:chouti@pku.edu.cn
mailto:bin.cui@pku.edu.cn
mailto:yangtongemail@gmail.com
mailto:liufy@bupt.edu.cn
mailto:steve@eecs.qmul.ac.uk
mailto:steve@eecs.qmul.ac.uk

query for the sliding window, which improves the performance of
PBF well. Further, we have expanded the functionality of Hopping-
Sketch to support frequency queries. More details are provided in
Section 4. Finally, we conducted extensive experiments, see Sec-
tion 5 for details. The experimental results show that when Hop-
pingSketch is applied to the PBF (PBF-H), the false positive rate
(FPR) of PBF-H is reduced by between 38.7% and 47.2% than the
original PBF on average. When using CM [4], CU [5] and C [6] as
the atomic sketches, HoppingSketch can achieve up to 7.2, 5.6 and
2.6 times lower ARE than the PCM, PCU, and PC2 for frequency
queries, respectively. We have open-sourced all code of Hopping-
Sketch at GitHub [7].

2 RELATED WORK

2.1 Persistent Bloom Filter

Persistent Bloom Filter (PBF) [1] is used for time membership
queries in a compact space, including two versions, PBF-1 and
PBF-2. PBF-1 performs binary decomposition on the time query
range, and constructs a Bloom filter (BF) for the corresponding
items of each time range generated by the binary decomposition.
The insertion and query processing is similar to the classic segment
tree operation. PBF-2 improves on PBF-1, using only one BF in the
entire decomposition level instead of using one BF in each time
interval of each level. This reduces the space overhead of PBF-1,
but the drawback is time instability when performing temporal
membership queries.

2.2 Classic Sketches for Data Streams

They mainly include the Bloom filter (BF) [8], the CM sketch
(CM) [4], the CU sketch (CU) [5] and the Count sketch (C) [6], etc:
Among them, BF is designed for membership queries, while the
others for frequency queries. A standard BF consists of u bits array
along with v hash functions. Each bit is set to 0 at the beginning.
For each incoming item, its vmapped bits are set to 1. For member-
ship queries, BF checks its v mapped bits to see if all of them have
been set to 1. CM and CU consist of L arrays, each array Az ð1 �
z � LÞ has F counters, and is associated with a hash function hzð:Þ.
When inserting an item e, CM increments the mapped counters
Az½hzðeÞ� by 1. CU is very similar to CM. The difference is that
when inserting an item e, CU only increments the mapped counter
with the minimum value by 1. Also, it does not support delete
operations. C is similar to CM and CU except that each array is
associated with two hash functions hzð:Þ and gzð:Þ, and gzð:Þ maps
each item to -1 or +1 with the same probability. When inserting an
item e, C calculates all hash functions and adds gzðeÞ to the coun-
ters Az½hzðeÞ� for each z. When querying an item e, C only reports
the median of A1½h1ðeÞ� � g1ðeÞ, A2½h2ðeÞ� � g2ðeÞ, . . . , AL½hLðeÞ� �
gLðeÞ. Therefore, C has double-sided errors, and CM and CU have
one-sided errors.

3 BASIC HOPPINGSKETCH

In this section, we describe the basic HoppingSketch, which uses
the Bloom filters (BFs) as the atomic sketches.

3.1 Problem Statement

Given the length K of a single window, a data stream S is defined
as S ¼ fðe1; t1Þ; ðe2; t2Þ; . . . ; ðei; tiÞ; . . .g, where ei is an item belong-
ing to the set U ¼ f1; 2; . . . ; Ng, and ti 2 Zþ is a monotonically
increasing timestamp indicating the time item ei occurs. The items
are partitioned into windows according to their timestamps. Win-
dow i 2 Zþ contains items at time ðði� 1ÞK; iK�. It is not possible

to store an infinite data stream with limited memory, so all queries
are about theM latest windows.

Temporal Membership Query. Given an item e from the w-th win-
dow, and l � r, we want to know whether item e appears in win-
dows l; lþ 1; . . . ; r.

3.2 Data Structure

As shown in Fig. 1, the data structure of basic HoppingSketch con-
sists of m (M � m �M þ k� 1) Bloom filters. We assume m ¼M

by default. We use Bi to denote the i-th Bloom filter created by
HoppingSketch.

Instead of inserting to one Bloom filter with k hash functions,
we insert items to k Bloom filters with one hash function. Each
Bloom filter has a size of n bit, uses one hash function and stores
items from at most kwindows.

When items from a new window (call it window w) arrives, the
oldest Bloom filter amongm Bloom filters is removed and the freed
memory is used to create a new Bloom filter Bwþk�1. Then, items
from window w is inserted to Bloom filter Bw;Bwþ1; . . . ; Bwþk�1.

Analysis. By inserting items to k Bloom filters, the memories are
shared among k Bloom filters. Suppose the i-th window contains ni

items. The false positive rate of inserting one Bloom filter with k hash
functions is about 1� e�

1
mkni , while the false positive rate of inserting

k Bloom filter with one hash function is about 1� e
� 1
m

Pk�1
j¼0 ni�k (m

denotes the number of bits in the Bloom filter). If some ni is signifi-
cantly larger than others, our algorithm will have better false positive
rate for window i queries.

3.3 Operations

3.3.1 Implementation

The pseudocode of the new window allocation operation is
shown in Algorithm 1. We use an array R of size m to store all the
Bloom filters and use a variable lat to record the ID of the latest
window, which is initialized to 0. The m newest Bloom filters
Blatþk�m;Blatþk�ðm�1Þ; . . . ; Blatþk�1 are stored in R (assume
lat � m). The Bloom filter Bk is stored at R½k mod m�.

Algorithm 1. New Window Allocation Procedure for Basic
HoppingSketch

1: lat latþ 1
2: if latþ k� 1 > m then
3: delete the oldest Bloom filter Blatþk�1�m stored at

R½ðlatþ k� 1Þmodm�
4: create Bloom filter

Blatþk�1 at R½ðlatþ k� 1Þmodm�

3.3.2 Insertion

The pseudocode of the insertion operation is shown in Algorithm 2.
For item e from the w-th window, we insert ðe;wÞ into

Fig. 1. The basic HoppingSketch, where the atomic sketch is Bloom filter and
m ¼ 6; k ¼ 3.

2. Here, PCM, PCU and PC refer to the new algorithms that we directly apply
PBF to CM, CU and C for comparison in Section 5.2.

9068 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Peking University. Downloaded on September 28,2023 at 15:01:11 UTC from IEEE Xplore. Restrictions apply.

Bw;Bwþ1; . . . ;Bwþk�1. If some of them has already been removed, we
just skip it. When inserting ðe;wÞ into the i-th Bloom filter, we use the
unique hash function hið:Þ in the i-th Bloom filter to hash e, i.e., set the
bitBi½ðhiðeÞ þ wÞmodn� to 1,wheren is the bit size of Bloomfilter.

Here k insertions to Bloom filters are performed in total. So the
time complexity is OðkÞ per insertion.

Algorithm 2. Insertion Procedure for Basic HoppingSketch

Input: An item e from window wðw � latÞ
1: for i 0 to k� 1 do
2: if wþ i � latþ k�m then
3: add ðe; wÞ to R½ðwþ iÞmodm�

3.3.3 Query

The pseudocode of the query operation is shown in Algorithm 3.
For item e from the w-th window, we query the existence of ðe; wÞ
in Bw;Bwþ1; . . . ; Bwþk�1. Report “not present” if and only if one of
the queried Bloom filters reports “not present”, i.e., 9w � i �
wþ k� 1, Bi has not been removed and Bi½ðhiðeÞ þ wÞmodn� ¼ 0.

Here at most k queries to Bloom filters are performed in total. So
the time complexity is OðkÞ per query.

Algorithm 3. Query Procedure for Basic HoppingSketch

Input: An item e from window wðw � latÞ
1: for i 0 to k� 1 do
2: if wþ i � latþ k�m then
3: query ðe; wÞ in R½ðwþ iÞmodm�
4: if R½ðwþ iÞmodm� reports “not present” then
5: return “not present”
6: return “present”

3.3.4 Example

As shown in Fig. 1, the structure consists of m ¼ 6 Bloom filters.
For each Bloom filter, we label it as B1; B2; . . . ; B6. Also, we set k ¼
3 and use one hash function in each Bloom filter.

Insertion. For item e from 8th window, as shown, we insert ðe; 8Þ
into Bw;Bwþ1; . . . ; Bwþk�1, that is B8, B9, B10. Then, we use the
unique hash function in the Bloom filter to hash item e. For exam-
ple, in Fig. 1 phase 3, when we insert ðe; 8Þ into B9, we set the bit
B9½ðh9ðeÞ þ 8Þmodn� to 1.

Query. In Fig. 1 phase 3, for item e from 3th window, we query if
item ðe; 3Þ is in the window w ¼ 3. Then, we query for presence in
Bw;Bwþ1; . . . ; Bwþk�1, i.e., B3; B4; B5. Since B3; B4 have been emp-
tied (or saved to external storage) in phase 3, we just skip them and
query B5. The item ðe; 3Þ exists if the Bloom filter reports “present”,
i.e., B5½ðh5ðeÞ þ 3Þmodn� ¼ 1.

4 APPLICATIONS

In this section, we show how to apply the HoppingSketch to exist-
ing sketches. We use the persistent Bloom filter (PBF) [1], CM [4],
CU [5] and C [6] as case studies.

4.1 Temporal Membership Query

We apply HoppingSketch, described in Section 3, to the PBF-1 of
PBF [1].

Data Structure. As shown in Fig. 2, the data structure consists of
L levels. For level ‘ 2 ½0; L� 1�, we maintain a HoppingSketch that
can store at most M‘ ¼ bM�2K‘

c þ 2 windows of length K‘ ¼ 2L�1�‘.
We use W‘;w to denote the w-th window of level ‘. Window W‘;w is
consist of K‘ windows from level L� 1, i.e., window
ðw� 1ÞK‘ þ 1; ðw� 1ÞK‘ þ 2; . . . ; wK‘.

By the definition of W‘;w, W‘;w ¼W‘þ1;2w�1 [W‘þ1;2w for l ¼
0; 1; . . . ; L� 2. This structure can be represented by a binary tree.
Each node represents a window W‘;w. For convenience, we call ‘the
node representing window W‘;w’ by node W‘;w. Each node
W‘;wð‘ < L� 1Þ has two children, node W‘þ1;2w�1 and node
W‘þ1;2w. The binary tree in Fig. 2 shows the structure of the PBF-H.
This illustrates the connection between our algorithm and the PBF.3

The binary tree structure is similar to a well known data struc-
ture called segment tree. In this structure, each node W‘;w repre-
sents a time interval ½ðw� 1ÞK‘ þ 1; wK‘� and every query interval
can be decomposed into several sub-intervals which can be found
in the binary tree.

Theorem 4.1. For every query interval ½a; b� (a < b < aþM), let the
query result be Wq ¼

S
i2½a;b�WL�1;i, there exists a set R0 ¼

fð‘i; wiÞg satisfyingWq ¼
S
ð‘;wÞ2R0

W‘;w and jR0j � 2Lþ 4.

Proof. Let RL�1 ¼ fðL� 1; kÞgbk¼a be the initial set. R0 is the desired
set.

For l ¼ L� 1; L� 2; . . . ; 1, let Tl ¼ fwjðl; 2w� 1Þ; ðl; 2wÞ 2
Rlg, then Rl�1 ¼ fðl� 1; wÞjw 2 Tlg [fði; wÞji 6¼ l _ w =2 Tlg.

We can prove by induction that Tl contains all items in
½minTl;maxTl�. By definition, TL�1 contains all items in ½bðaþ
1Þ=2c; bb=2c�. If Tl contains all items in ½minTl;maxTl�, then Tl�1
contains all items in ½bðminTl þ 1Þ=2c; bmaxTl=2c�.

Hence, 81 � l < L; jfðl; wÞ 2 R0gj � 2. Only ðl;minTlþ1Þ;
ðl;maxTlþ1Þ (let TL ¼ fija � i � bg for convenience) may be
items of R0. There are at most 4 windows in level 0, so we have
jR0j � 2Lþ 4. tu
Denote Bl;w as the w-th Bloom filter of level l.

Algorithm 4. Decomposition Procedure for HoppingSketch

Input: Time intervalX;Y
Output: Intervals fðxi; yiÞgki¼1 s.t.

½X; Y � ¼ S k
i¼1½xi; yi�

1: Function decomp ðx; y;X; Y Þ:
2: ifX ¼ Y then
3: return fðX;XÞg
4: mid :¼ bXþY2 c
5: if Y � mid then
6: return decompðx;mid;X; Y Þ
7: else ifX > mid then
8: return decompðmidþ 1; y;X; Y Þ
9: else
10: return decompðx;mid;X; Y Þ[

decompðmidþ 1; y;X; Y Þ
11: return s

Fig. 2. HoppingSketch’s application on PBF (PBF-H) and its binary tree version
(connected by green dotted line).

3. In short, compared with the original PBF-1 structure, each node of PBF-H
maintains HoppingSketch instead of the standard Bloom filter.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023 9069

Authorized licensed use limited to: Peking University. Downloaded on September 28,2023 at 15:01:11 UTC from IEEE Xplore. Restrictions apply.

When data from a new window w arrives, for those levels satis-
fying wmodK‘ ¼ 1, a new window must be allocated to them (see
the previous section).

Insertion. For item e from window w, for every level ‘ ¼
0; 1; . . . ; L� 1, we insert a new item e to Bloom filter B‘;bðw�1Þ=K‘cþ1.
The insertion of HoppingSketch is described in the previous sec-
tion. Here L insertions to HoppingSketch are performed in total, so
the time complexity is OðLkÞ ¼ Oðk logmÞ per insertion.

Query. From Theorem 4.1, we can decompose the query interval
½x; y� into OðlogMÞ sub-intervals on the binary tree. The decompo-
sition procedure is shown below (Algorithm 4). Here L queries to
HoppingSketch are performed in total, so the time complexity is
OðLkÞ ¼ Oðk logmÞ per query.

4.2 Frequency Query

HoppingSketch can be used to implement frequency queries by
using CM, CU and C as the atomic sketches, respectively. It can
query the number of occurrences of an item in a certain time
period.

Allocation & Insertion. As long as the atomic sketch supports cre-
ation (create a new sketch), deletion (delete an existing sketch) and
insertion (insert an element pair ðe; wÞ into the sketch), we can
always generalize Algorithms 1 and 2 to the new atomic sketch.

Query. The query procedure should be crafted to the task at
hand. The key principle is to imitate the query procedure of atomic
sketch. Most of the atomic sketches first maps e to k indices
i1; i2; . . . ; ik by k hash functions, then obtain the query results by
the k values on indices i1; i2; . . . ; ik. For HoppingSketch, we first
maps ðe; wÞ to k indices in k atomic sketches, then obtain the query
results by the k query results from atomic sketch in the same way.
We show the query procedure of HoppingSketch applied to CM
sketch as an example (Algorithm 5).

Algorithm 5. Query Procedure for HoppingSketch Applied to
CM sketch

Input: An item e from window wðw � latÞ
1: s :¼ 1
2: for i 0 to k� 1 do
3: if wþ i > lat�m then
4: s :¼ minðs; R½ðwþ iÞmodm�:queryðe; wÞÞ
5: return s

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate the
performance of HoppingSketch.

5.1 Experimental Setup

Our experimental setup includes the algorithms we compare
against, the datasets used, the evaluation metrics, and default
settings.

5.1.1 Datasets

The following two real-world datasets and one Synthetic Dataset
are used in our experiments.

� IP Trace Dataset. The IP Trace Dataset is a public dataset
that includes anonymized IP traces from high-speed Inter-
net Backbone links collected by CAIDA [9]. Each item con-
tains a source IP address (4 bytes) and a destination IP
address (4 bytes), 8 bytes in total.

� WebDocs Dataset. The WebDocs is a collection of web
HTML documents built by a number of web pages [10].
Each item in the Web page dataset is 8 bytes.

� Synthetic Datasets. We generate the Synthetic Dataset that
follows the Zipf [11] distribution using Web Polygraph
[12], an opensource performance testing tool. The length of
each item ID is 4 bytes.

5.1.2 Implementation

All the algorithms are implemented in C++. The hash function we
adopted in these algorithms is the Bob hash [13]. All programs are
run on a server with 128 GB system memory and a 18-core CPU (36
threads, Intel(R) Core(R) CPU i9-10980XE @4.00GHz). We set the
number of hash functions to 3 for all algorithms, which usually
gives nearly optimal performance. For every dataset, we set a
memory limit for temporal membership query and frequency
query. The size of atomic sketches are adjusted base on the mem-
ory limits.

Since few algorithms can perform both membership query and
frequency estimation like HoppingSketch, we need to separately
select the algorithms that implement membership query and fre-
quency query together for comparison.

Temporal Membership Query. The first is the original persistent
Bloom filter [1] (PBF), and we use PBF-1 version for comparison.
The second is HoppingSketch applied to PBF-1 described in Sec-
tion 4 (PBF-H). Therefore, for the temporal membership query
task: PBF versus PBF-H.

Frequency Query. We use the following schemes for comparison:
1) PBF applied to CM [4] (PCM) versus HoppingSketch applied to
PCM (PCM-H); 2) PBF applied to CU [5] (PCU) versus Hopping-
Sketch applied to PCU (PCU-H); 3) PBF applied to C [6] (PC) versus
HoppingSketch applied to PC (PC-H). Note that we only need to
change the atomic sketch of PBF from BF to CM, CU, and C to effi-
ciently implement PCM, PCU, and PC.

5.1.3 Evaluation Metrics

We choose three typical metrics, including FPR, ARE and efficiency
(insertion time and query time), to measure the above tasks. In the
following, we regard S as the data stream, and ðe; wÞ 2 S as item e
arrived in the w-th time window at least once.

� FPR (False Positive Rate, temporal membership query): For
every time window w, we define the false positive rate as
FPRw ¼ 1

jEw j
P

e2Ew
f̂ðe;wÞ: Where Ew ¼ fejðe; wÞ =2 S ^

9w0; ðe; w0Þ 2 Sg and f̂ðe;wÞ represents the membership
query result (0 or 1) of item i in the w-th time window.

� Efficiency (Insertion Time and Query Time, temporal member-
ship query): We sample 100,000 random items from IP Trace
Dataset to investigate the insertion and query cost by
examining the amortized cost of inserting and querying
one item when we vary the value of query length jqj.

� ARE (Average Relative Error, frequency query): For every win-
dow w, we define the average relative error as AREw ¼
1
jWw j

P
e2Ww

jfðe;wÞ�f̂ðe;wÞ j
fðe;wÞ

: Here, Ww ¼ fejðe; wÞ 2 Sg, and fðe;wÞ
and f̂ðe;wÞ represent the actual and estimated frequency of
item e in the w-th time window respectively.

5.2 Comparison With Prior Art

FPR versus query length jqj (Figs. 3a, 3b, and 3c): This experiment shows
that the FPR of PBF-H is much lower than the original PBF. Here jqj
denotes the length of each query interval. Therefore, compared with
original PBF, PBF-H has obvious advantages in handling queries of
longer query intervals. We find that, on the Synthetic Dataset, the
FPR of PBF-H is about 47.2% lower than the original PBF. When
compared in multiples, the FPR of PBF-H is about 9.6 times lower
than the original PBF. On the two real-world datasets, the FPR of
PBF-H is about 38.7% lower than the original PBF. When compared
in multiples, the FPR of PBF-H is about 7.1 times lower than the

9070 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Peking University. Downloaded on September 28,2023 at 15:01:11 UTC from IEEE Xplore. Restrictions apply.

original PBF. Specifically, the FPR of PBF-H and PBF both increase
with the increase of query length jqj, but PBF-H grows only slightly
as jqj increases exponentially and stays as low as less than 7.5%
even when jqj is over 210 on all datasets. The initial FPR of the origi-
nal PBF is much larger than PBF-H, and it increases rapidly as jqj
increases.

Insertion time and query time versus query length jqj (Figs. 5a and
5b): This experiment shows that the insertion time and query time of
PBF-H are slightly slower than the original PBF.Specifically, the inser-
tion time of PBF-H is about 0:43ms longer than PBF, and the query
time of PBF-H is around 0:3ms longer than PBF. Although PBF-H
has no obvious advantages over the original PBF in terms of inser-
tion time and query time, its efficiency is still acceptable.

ARE versus query length jqj (Figs. 4a, 4b, and 4c): This experiment
shows that the ARE of PCM-H, PCU-H and PC-H is much lower than
the corresponding PCM, PCU and PC.The details are as follows.

1) PCM versus PCM-H. We find that, on the Synthetic Dataset,
the ARE of the PCM-H is around 7.2 times lower than
PCM. On the two real-world datasets, the ARE of PCM-H
is about 4.5 times lower than PCM as the query length jqj
increases.

2) PCU versus PCU-H. We find that, on the Synthetic Dataset,
the ARE of the PCU-H is around 5.6 times lower than PCU.

On the two real-world datasets, the ARE of PCU-H is about
3.5 times lower than PCU as the query length jqj increases.

3) PC versus PC-H. We find that, on the Synthetic Dataset, the
ARE of the PC-H is around 1.5 times lower than PC. On
the two real-world datasets, the ARE of PC-H is about 2.2
times lower than PC as the query length jqj increases.

6 CONCLUSION

This paper proposes a novel sketch framework HoppingSketch,
which is the first sketch to implement temporal membership
queries on the sliding window, and can flexibly implement differ-
ent tasks by transforming different atomic sketches. When the
atomic sketch is Bloom filter, it achieves significantly higher accu-
racy of temporal membership query than the original PBF. Further,
when the atomic sketch is CM, CU or C, it achieves more accurate
frequency query than the PBF’s application on CM, CU and C. Our
experimental results show that HoppingSketch achieves higher
accuracy: the FPR of PBF-H is between 38.7% to 47.2% lower than
the original PBF, and the ARE of PCM-H, PCU-H and PC-H
achieves up to 7.2, 5.6 and 2.2 times lower ARE than PCM, PCU
and PC as the query length jqj increases, respectively.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valu-
able suggestions and comments.

REFERENCES

[1] Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent bloom filter: Mem-
bership testing for the entire history,” in Proc. Int. Conf. Manage. Data, 2018,
pp. 1037–1052.

[2] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream statis-
tics over sliding windows,” SIAM J. Comput., vol. 31, no. 6, pp. 1794–1813,
2002.

[3] Y. Zhang, X. Lin, Y. Yuan, M. Kitsuregawa, X. Zhou, and J. W. Yu,
“Duplicate-insensitive order statistics computation over data streams,”
IEEE Trans. Knowl. Data Eng., vol. 22, no. 4, pp. 493–507, Apr. 2010.

[4] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

Fig. 3. FPR versus query length jqj.

Fig. 4. ARE versus query length jqj.

Fig. 5. Efficiency versus query length jqj.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023 9071

Authorized licensed use limited to: Peking University. Downloaded on September 28,2023 at 15:01:11 UTC from IEEE Xplore. Restrictions apply.

[5] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[6] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” in Proc. Int. Colloq. Automata Lang. Program., 2002, pp. 693–
703.

[7] Source code related to HoppingSketch, 2022. [Online]. Available: https://
github.com/pkufzc/HoppingSketch

[8] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[9] The CAIDA Anonymized Internet Traces, 2018. [Online]. Available: http://
www.caida.org/data/overview/

[10] Real-life transactional dataset, 2004. [Online].Available: http://fimi.uantwerpen.
be/data/

[11] D. M. W. Powers, “Applications and explanations of Zipf’s law,” in Proc.
Joint Conf. New Methods Lang. Process. Comput. Natural Lang. Learn., 1998,
pp. 595–599.

[12] A. Rousskov and D. Wessels, “High-performance benchmarking with web
polygraph,” Softw. Pract. Experience, vol. 34, no. 2, pp. 187–211, 2004.

[13] Hash website, 1997. [Online]. Available: http://burtleburtle.net/bob/hash/
evahash.html

Zhuochen Fan is currently working toward the
PhD degree with School of Computer Science,
Peking University, advised by Tong Yang. His
research interests include network big data, net-
work measurements, sketches, and Bloom Filters.
He published papers in IEEE Transactions on
Knowledge and Data Engineering, ICDE, RTSS,
ICPP, ICNP, etc.

Yubo Zhang received the BS degree in computer
science from Peking University in 2022. He is cur-
rently working toward the PhD degree with the
School of Computer Science. His research inter-
ests include algorithmdesign, and sketches.

Siyuan Dong is an undergraduate majoring in
computer science with the School of Electronics
Engineering and Computer Science, Peking Univer-
sity, advised by Tong Yang. His research interests
include cover network measurements, sketches,
BloomFilters, and hash tables.

Yi Zhou is currently working toward the BS
degree with the School of Electronics Engineer-
ing and Computer Science, Peking University. His
research interests include network and data
stream algorithms.

Fangyi Liu received the BE degree in telecommu-
nication engineering from the Beijing University of
Posts and Telecommunications, in 2022, where
she is currently working toward master’s degree
with the School of Computer Science. Her research
interests include network managements, commu-
nication software, and industrial internet.

Tong Yang (Member, IEEE) received the PhD
degree in computer science from Tsinghua Uni-
versity, in 2013. He visited the Institute of Comput-
ing Technology, Chinese Academy of Sciences
(CAS). He is currently an associate professor with
the School of Computer Science, Peking Univer-
sity. His research interests include network meas-
urements, sketches, IP lookups, Bloom filters, and
KV stores. He published papers in SIGCOMM,
SIGMOD, SIGKDD, NSDI, VLDB, ICDE, INFO-
COM, USENIX ATC, IEEE Transactions on

Knowledge and Data Engineering, VLDB Journal, IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE/ACMTransactions on Networking, IEEE Journal on Selected Areas
in Communications, etc. He is currently an associate editor for Knowledge
and Information Systems.

Steve Uhlig received the PhD degree in applied
sciences from the University of Louvain, Belgium,
in 2004. From2004 to 2006, he was a postdoctoral
fellow with the Belgian National Fund for Scientific
Research (F.N.R.S.). From 2004 to 2006, he was a
visiting scientist with Intel Research Cambridge,
U.K., and with the Applied Mathematics Depart-
ment, University of Adelaide, Australia. From 2006
to 2008, he was with Delft University of Technol-
ogy, the Netherlands. Prior to joining Queen Mary
University, he was a senior research scientist with

Technische Universit€at Berlin/Deutsche Telekom Laboratories, Berlin,
Germany. Since January 2012, he was the professor of Networks and
head of the Networks Research group with the Queen Mary University of
London. From 2012 to 2016, he was a guest professor with the Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China.
He is currently the head of School of Electronic Engineering and Com-
puter Science, QMUL.

Bin Cui (Senior Member, IEEE) received the PhD
degree from the National University of Singapore,
in 2004. He is a professor and vice dean with the
School of Computer Science, Peking University.
His research interests include database system
architectures, query and index techniques, big
data management and mining. He is serving as
vice chair of Technical Committee on Database
China Computer Federation (CCF) and Trustee
Board Member of VLDB Endowment. He was
awarded Microsoft Young Professorship award

(MSRA 2008), CCF Young Scientist award (2009), and Second Prize of
Natural Science Award of MOE China (2014), etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

9072 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: Peking University. Downloaded on September 28,2023 at 15:01:11 UTC from IEEE Xplore. Restrictions apply.

https://github.com/pkufzc/HoppingSketch
https://github.com/pkufzc/HoppingSketch
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/
http://burtleburtle.net/bob/hash/evahash.html
http://burtleburtle.net/bob/hash/evahash.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

